Sentiment analysis Using Neural Network Models

1Aynur Islamovich Akhmetgaliev, Fail Mubarakovich Gafarov and Farida Bizyanovna Sitdikova

133 Views
60 Downloads
Abstract:

The article deals with methods for solving the problem of sentiment analysis based on neural network models of natural language processing. The article considers methods that create a vector representation of words in the n-dimensional vector space, which are based on "Word2Vec", "GloVe", "FastText" technology. Approaches are used in the tasks of classification, sentiment analysis, typo correction, recommendation systems. We present the results of classifications comparison in the problem of sentiment analysis of a multilayer perceptron, a convolutional and recurrent neural network, decision trees (random forest), support vector machine (SVM), naive Bayes classifier (NB), and k-nearest neighbors (K-NN). The results of the classification are presented for three data sets: Twitter messages, reviews of various goods and services, Russian-language news.

Keywords:

Sentiment Analysis, Word2Vec, GloVe, FastText, Vector Word Representation, Recurrent Neural Networks, Convolutional Neural Networks

Paper Details
Month3
Year2019
Volume23
IssueIssue 1
Pages195-201