LATEN VARIABLES PATH NONPARAMETRIC ANALYSIS: ESTIMATING FUNCTIONS AND TESTING HYPOTHESES

Authors

  • Fariq Hidayat University of Brawijaya, Malang, Indonesia Author
  • Adji Achmad Rinaldo Fernandes University of Brawijaya, Malang, Indonesia Author
  • Solimun University of Brawijaya, Malang, Indonesia Author

DOI:

https://doi.org/10.61841/vy834e16

Keywords:

Path Analysis, PCA, GCV, Truncated spline, polynomial, knots, Nonparametric, Post-mining Land

Abstract

This study is to identify patterns of relationships between manifest variables and latent variables. Parametric path analysis is one of the proper analytical techniques used to form unknown curves. The phenomenon states it is difficult to get a curve shape or curve shape is unknown. Nonparametric path analysis is used to estimate the function with the truncated spline approach which contains parameters of polynomial degrees and knots. The case of post-mining revegetation technique is used as a case study because the pattern of relationships between variables is not linear. PCA is carried out to measure the indicators of each variable, so that the contribution of component variables and variables used are reflected by the strongest indicators. The results showed that the best model of path analysis with linear polynomial degrees and knot point 3 with GCV values of 1738,303.

 

Downloads

Download data is not yet available.

References

[1] Anshari, M.F., Boedianto, Fernandes, A.A.R., dan Ariesoesilaningsih, E. (2018). Hydroseeding application using pioneer local plant seeds for coal postmining soil in Tanah Laut Regency, South Kalimantan. Journal of Degraded and Mining Lands Management. Hal. 1335-1345.

[2] Budiantara, I.N. (2009). Spline Dalam Regresi Nonparametrik dan Semiparametrik.Sebuah Permodelan Statistika Masa Kini dan Masa Mendatang. Pidato Pengukuhan Untuk Jabatan Guru Besar. Institut Teknologi Sepuluh November, Surabaya.

[3] Budiantara, I.N., Suryadi, F., Otok, B. dan Guritno, S. (2006). “Pemodelan B-Spline dan MARS pada Nilai Ujian Masuk Terhadap IPK Mahasiswa Jurusan Disain Komunikasi UK Petra. Surabaya”. Jurnal Teknik Industri, 8, 1-13.

[4] Budiantara, I.N. (2005). Regresi Spline Linier. Makalah Pembicara Utama pada Seminar Nasional Matematika.

FMIPA. Universitas Diponogoro, Semarang.

[5] Budiantara, I.N. (2001b). “Estimasi Parametrik dan Nonparametrik untuk Pendekatan Kurva Regresi”. Makalah Pembicara Utama pada Seminar Nasional Statistika V. Jurusan Statistika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Teknologi Sepuluh Nopember (ITS). Surabaya.

[6] Budiantara, I.N. (2000b).” Optimasi dan Proyeksi Dalam Regresi Nonparametrik Spline”. Majalah Berkala Matematika dan Ilmu Pengetahuan Alam (BMIPA). Universitas Gadjah Mada, 10, 35-44.

[7] Budiantara, I.N. (2000a). Metode U, GML, CV dan GCV dalam Regresi Nonparametrik Spline. Majalah Ilmiah Himpunan Matematika Indonesia (MIHMI), 6, 285-290.

[8] Budiantara, I.N., Subanar, dan Soejoeti, Z. (1997). Weighted Spline Estimator. Bulletin of the International Statistical Institute, Vol. 51 No.1, hal. 333-334.

[9] Dillon, W.R. dan Goldstein, M. (1984). Multivariate Analysis Methods and Applications. John Willey and Sons. New Jersey.

[10] Eubank, R.L. (1999). Nonparametrik Regression and Spline Smoothing, Second Edition. Marcel Dekker Inc. New York.

[11] Fernandes, A.A.R.,Nyoman Budiantara, I.,Otok, B.W.,Suhartono, (2014), “Spline estimator for bi-responses nonparametric regression model for longitudinal data ”, Applied Mathematical Sciences, Vol 8 No 114, pp 5653- 5665.

[12] Fernandes, A.A.R, Solimun, dan Arisoesilaningsih, E. (2017). Estimation of spline function in nonparametrik path

analysis based on penalized weighted least square (PWLS). AIP Proceeding, ICWOMAA. 1913, 020037.

[13] Fernandes, A.A.R, Budiantara, I.N., Otok, B.W. dan Suhartono. (2015). Spline Estimator for Bi-Endogenses and Multi-Prediktiors Nonparametrik Regression Model in Case of Longitudinal Data. Journal of Mathematics and Statistics, Vol 11, No 2, 2015, hal. 61-69.

[14] Fernandes, A.A.R, Jansen, P., Sa’adah, U, Solimun, Nurdjannah, Amaliana, L., and Efendi, A. (2018). “Comparison of Spline Estimator at Various Levels of Autocorrelation in Smoothing Spline Nonparametric Regression For Longitudinal Data”, Communications in Statistics – Theory and Methods, Vol 46, No 24, pp 12401-12424.

[15] Fernandes, A.A.R., Hutahayan, B., Solimun, Arisoesilaningsih, E., Yanti, I., Astuti, A.B., Nurjannah, & Amaliana, L, (2019). “Comparison of Curve Estimation of the Smoothing Spline Nonparametric Function Path Based on PLS and PWLS In Various Levels of Heteroscedasticity”, IOP Conference Series: Materials Science and Engineering, Forthcoming Issue.

[16] Gujarati, D.N. (2004). Basic Econometric, (4th Ed.). The McGraw-Hill Companies. New York.

[17] Hair, J.F., Black, W.C., Babin, B.J. dan Anderson, R.E. (2014). Multivariate Data Analysis. Prentice Hall. New Jersey.

[18] Hardle, W. (1990). Applied Nonparametric Regression. Cambridge University Press, New York.

[19] Hutahayan, B., Solimun, Fernandes, A.A.R., Arisoesilaningsih, E., Yanti, I., Astuti, A.B., Nurjannah, & Amaliana, L, (2019), “Mixed Second Order Indicator Model: The First Order Using Principal Component Analysis and The Second Order Using Factor Analysis”, IOP Conference Series: Materials Science and Engineering, Forthcoming Issue.

[20] Howell, J.R. (2007). Analysis Using Smoothing Splines As Implemented In LME In R. Thesis. Brigham Young University.

[21] Rencher, A. dan Schaalje, G. (2007), Linear Models in Statistics, 2nd Edition, John Willey and Sons Inc., New Jersey.

[22] Rencher, A. (2002). Methods of Multivariate Analysis.Second Edition. John Wiley dan Sons.,Inc. New York.

[23] Schumaker, L. (2007). Basic Theory: Spline Function. Cambridge University Press. New York.

[24] Soesilaningsih, E., Indriyani, S., Retnowati, R., dan Fernandes, A.A.R. (2009). Pemodelan Pertumbuhan Vegetatif dan Produksi Umbi Porang pada Beberapa Umur Tanaman, Kondisi Vegetasi, Tanah serta Iklim Agroforestri. Staff Research Grant I-MHERE. Malang.

[25] Solimun. (2010). Analisis Multivariat Pemodelan Struktural Metode Partial Least Square-PLS. CV. Citra. Malang.

[26] Wahba, G. (1990). Spline Models for Observational Data. SIAM. Pensylvania.

Downloads

Published

30.09.2020

How to Cite

Hidayat, F., Fernandes, A. A. R., & Solimun. (2020). LATEN VARIABLES PATH NONPARAMETRIC ANALYSIS: ESTIMATING FUNCTIONS AND TESTING HYPOTHESES. International Journal of Psychosocial Rehabilitation, 24(7), 1139-1159. https://doi.org/10.61841/vy834e16