The Decision of the Most Feasible Power Plant in Underdeveloped, Remote and Outermost (3T) Region by Decision Matrix Analysis: Case Study of Pasi Island

Authors

  • Donny Yoesgiantoro Departmen of Energy Security of Indonesia Defence University, Bogor, Indonesia Author

DOI:

https://doi.org/10.61841/6vkacb03

Keywords:

decision, matrix, renewable, battery, energy

Abstract

Underdeveloped, remote and outermost regions (3T) are regions that have a very low indexof human development and infrastructure. One of the main factors in the development of the 3T regions is the fulfillment of the needs and potential demands of energy. The author determines three alternative power plants that can be built in the regions with low cost, able to be constructed in a short time, and do not require to be connected to the PLN's lines. The three alternative plants are PLTD, PLTS and also ESS batteries. The areas used as case studies are three (3) villages in Pasi Island, South Sulawesi Province. The analytical method used is a decision matrix analysis with primary data from questionnaires and mathematical calculations while secondary data from the literature review. The results indicated that battery ESS is the most optimal and cost-efficient choice asa power plant on Pasi Island.

 

Downloads

Download data is not yet available.

References

1. Al-Tekreeti, M. S., & Beheiry, S. M. 2016. A decision matrix approach to green project management processes. World Journal of Science, Technology and Sustainable Development, 13(3), 174-189. Bratakusumah, D. S. Phd. 2006. Daerah Tertinggal. Internal Report on Underdeveloped Region. Jakarta: Kementerian Pendayagunaan Aparatur Negara dan Reformasi Birokrasi Republik

2. Indonesia

3. Breeze, P. 2018. Power System Energy Storage Technologies. Academic Press.

4. Colwell, S., Friedmann, M. and Carmichael, D. 2000. “The research vendor selection process: a quantitative decision matrix for increasing value for both buyers and sellers”. Journal of Financial Services Marketing. Vol. 5 No. 2, pp. 181-196.

5. Domínguez, C. R., Martínez, I. V., Peña, P. M. P., & Ochoa, A. R. 2019. Analysis and evaluation of risks in underground mining using the decision matrix risk-assessment (DMRA) technique, in Guanajuato, Mexico. Journal of Sustainable Mining, 18(1), 52-59.

6. Eryadi, D., Putra, T. D., & Endayani, I. D. 2016. Pengaruh penggunaan alat penghemat bahan bakar berbasis elektromagnetik terhadap unjuk kerja mesin diesel. PROTON, 4(2).

7. ESDM, M. 2019. Keputusan Menteri Energi dan Sumber Daya Mineral Nomor 55 K/20/MEM/2019 tentang Besaran Biaya Pokok Penyediaan Pembangkitan PT. Perusahaan Listrik Negara (Persero) Tahun 2018. Jakarta : Kementerian ESDM.

8. ESDM, M. 2017. Peraturan Menteri Energi dan Sumber Daya Mineral Republik Indonesia No 10 Tahun 2017 Tentang Pokok-pokok Dalam Perjanjian Jual Beli Tenaga Listrik. Jakarta : Kementerian ESDM.

9. Funabashi, T. 2016. Integration of Distributed Energy Resources in Power Systems: Implementation, Operation and Control. Academic Press

10. Hasan, F., Jain, P. K., & Kumar, D. 2013. Machine reconfigurability models using multi-attribute utility

theory and power function approximation. Procedia Engineering, 64, 1354-1363.

11. Incorporated, ESS. 2018. Further Beyond Four Hours : Revisiting Long Duration Storage. ESS Inc. Indonesia, Presiden Republik. 2017. Peraturan Presiden Republik Indonesia No 22 Tahun 2017 tentang

12. Rencana Umum Energi Nasional. Jakarta : Sekretariat Negara.

13. IRENA. 2019. Renewable Energy Statistics 2019. IRENA

14. Kailiponi, P. 2010. Analyzing evacuation decisions using multi-attribute utility theory (MAUT).

15. Procedia Engineering, 3, 163-174.

16. Nicholls, J. 1995. The MCC decision matrix: a tool for applying strategic logic to everyday activity.

17. Management Decision, Vol. 33 No. 6, pp. 4-10.

18. Novakovic, B., & Nasiri, A. 2015. Introduction to electrical energy systems. Electric Renewable Energy Systems, 1.

19. Olli, T., Jaakko, S., Kalle, K. and Jukka, H. 2014. Environmental index for finnish construction sites.

20. Construction Innovation, Vol. 14 No. 2, pp. 245-262.

21. Rotarescu, E. 2010. Alternative selection under risk conditions in human resources training and development through the application of the estimated monetary value and decision tree analysis. Land Forces Academy Review, 15(4), 468.

22. Tampubolon, B. I., Fauzi, A., & Ekayani, M. 2015. Internalisasi Biaya Eksternal Serta Analisis Kebijakan Pengembangan Energi Panas Bumi Sebagai Energi Alternatif. Risalah Kebijakan Pertanian Dan Lingkungan: Rumusan Kajian Strategis Bidang Pertanian dan Lingkungan, 2(2), 97-104.

23. Zhang, Q., & Xiu, H. 2018. An Approach to Determining Attribute Weights Based on Integrating Preference Information on Attributes with Decision Matrix. Computational intelligence and neuroscience, 2018.

24. Zhang, Y. J., Ideue, T., Onga, M., Qin, F., Suzuki, R., Zak, A., ... & Iwasa, Y. (2019). Enhanced intrinsic photovoltaic effect in tungsten disulfide nanotubes. Nature, 570(7761), 349.

Downloads

Published

30.06.2020

How to Cite

Yoesgiantoro, D. (2020). The Decision of the Most Feasible Power Plant in Underdeveloped, Remote and Outermost (3T) Region by Decision Matrix Analysis: Case Study of Pasi Island. International Journal of Psychosocial Rehabilitation, 24(6), 1913-1928. https://doi.org/10.61841/6vkacb03