Impact of Chitosan Nanoparticles Loaded Oxytetracycline Hydrochloride for Drug Delivery Against Flavobacterium Columnare Isolated From Common Carp (Cyprinus CarpioL.)
DOI:
https://doi.org/10.61841/jgkvdd36Keywords:
ChitosanNanoparticle, Oxytetracycline,, Ionic gelation, Encapsulation EfficiencyAbstract
This present study investigates a new method for oxytetracycline (OTC) application through the use of Chitosan nanoparticles (ChNPs) as drug delivery, used the ionic gelation method for preparation of chitosan nanoparticles and it's loaded. Also characterized the properties particle size, shape, encapsulation efficiency, and antibacterial activity against F.columnare isolated from common carp. The formulations are spherical.The diameter of chitosan nanoparticles size varying from 10-15 nm and chitosan nanoparticles loaded oxytetracycline(ChNPs-OTC) in size about 20 nm. With high encapsulation efficiency ranging from 99.4% to 99.8%. Antibacte¬rial activity was in vitro against Flavobacterium columnare using a good diffusion method, 5 concentrations of ChNPs-OTC (20,15,10,5, and 2.5 µg/ml) with 20ug/ml of blank oxytetracycline as control positive. The higher inhibition zone was recorded in ChNPs-OTC with higher concentration. These results suggest that ChNPs-OTC show possible using the delivery of drugs and improved treatment effectiveness for bacterial fish diseases.
Downloads
References
1. Abdel-Fattah, W. I., Sallam, A. S. M., Atwa, N. A., Salama, E., Maghraby, A. M., & Ali, G. W. (2014). Functionality, antibacterial efficiency and biocompatibility of nanosilver/chitosan/silk/phosphate scaffolds
1. Synthesis and optimization of nanosilver/chitosan matrices through gamma rays irradiation and their antibacterial activity. Materials Research Express, 1(3), 035024.
2. Alishahi, A., Mirvaghefi, A., Tehrani, M. R., Farahmand, H., Koshio, S., Dorkoosh, F. A., & Elsabee, M.
Z. (2011). Chitosan nanoparticle to carry vitamin C through the gastrointestinal tract and induce the non- specific immunity system of rainbow trout (Oncorhynchus mykiss). Carbohydrate polymers, 86(1), 142- 146.
3. Amini, H., & Ahmadiani, A. (2005). Sensitive determination of clarithromycin in human plasma by high- performance liquid chromatography with spectrophotometric detection. Journal of Chromatography B, 817(2), 193-197.
4. Avadi, M. R., Sadeghi, A. M. M., Tahzibi, A., Bayati, K. H., Pouladzadeh, M., Zohuriaan-Mehr, M. J., & Rafiee-Tehrani, M. (2004). Diethylmethyl chitosan as an antimicrobial agent: Synthesis, characterization and antibacterial effects. European Polymer Journal, 40(7), 1355-1361.
5. Azhdarzadeh, M., Lotfipour, F., Zakeri-Milani, P., Mohammadi, G., & Valizadeh, H. (2012). Anti-bacterial performance of azithromycin nanoparticles as colloidal drug delivery system against different gram- negative and gram-positive bacteria. Advanced pharmaceutical bulletin, 2(1), 17.
6. Bohloli Khiavi, R. (2017). Methods for in vitro evaluating antimicrobial activity: A review. Laboratory & Diagnosis, 9(35), 43-53.
7. Chopra, I., & Roberts, M. (2001). Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiology and molecular biology reviews, 65(2), 232-260.
8. Cover, N. F., Lai-Yuen, S., Parsons, A. K., & Kumar, A. (2012). Synergetic effects of doxycycline-loaded chitosan nanoparticles for improving drug delivery and efficacy. International journal of nanomedicine, 7, 2411.
9. Csaba, N., & Alonso, M. J. (2014). 12. Biodegradable polymer nanoparticles as protein delivery systems: Original research articles: Design of biodegradable particles for protein delivery (2002), Chitosan nanoparticles as delivery systems for doxorubicin (2001); design of microencapsulated chitosan microspheres for colonic drug delivery (1998). Journal of controlled release: official journal of the Controlled Release Society, 190, 53.
10. Darwish, A. M., Rawles, S. D., & Griffin, B. R. (2002). Laboratory efficacy of oxytetracycline for the control of Streptococcus iniae infection in blue tilapia. Journal of Aquatic Animal Health, 14(3), 184-190.
11. De Jong, W. H., & Borm, P. J. (2008). Drug delivery and nanoparticles: applications and hazards. International journal of nanomedicine, 3(2), 133.
12. Du, W. L., Niu, S. S., Xu, Y. L., Xu, Z. R., & Fan, C. L. (2009). Antibacterial activity of chitosan tripolyphosphate nanoparticles loaded with various metal ions. Carbohydrate polymers, 75(3), 385-389.
13. E’atelaf, A. (2015). Role of Chitosan Application in Postoperative Abdominal Adhesions in Rabbits. The Iraqi Journal of Veterinary Medicine (ISSN-P: 1609-5693 ISSN-E: 2410-7409), 39(1), 105-111.
14. Erdogdu AT (2012), Using antibiotics in aquatic living beings, rational use of antibiotics and antimicrobial resistance symposium, Ankara, Turkey, pp 87-95.
15. Gan, Q., Wang, T., Cochrane, C., & MaCarron, P. (2005). Modulation of surface charge, particle size and morphological properties of chitosan–TPP nanoparticles included for gene delivery. Colloids and Surfaces B: Biointerfaces, 44, 65–73.
16. Ghadi, A., Mahjoub, S., Tabandeh, F., & Talebnia, F. (2014). Synthesis and optimization of chitosan nanoparticles: Potential applications in nanomedicine and biomedical engineering. Caspian journal of internal medicine, 5(3), 156.
17. Jain, D., & Banerjee, R. (2008). Comparison of ciprofloxacin hydrochloride‐loaded protein, lipid, and chitosan nanoparticles for drug delivery. Journal of Biomedical Materials Research Part B: Applied
Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 86(1), 105-112.
18. Khanmohammadi, M., Elmizadeh, H., & Ghasemi, K. (2015). Investigation of size and morphology of chitosan nanoparticles used in drug delivery system employing chemometric technique. Iranian journal of pharmaceutical research: IJPR, 14(3), 665.
19. Lee, Y. S., Jang, K., & Cha, J. D. (2012). Synergistic antibacterial effect between silibinin and antibiotics in oral bacteria. Journal of Biomedicine and Biotechnology, 2012.
20. Meng, J., Sturgis, T. F., & Youan, B. B. C. (2011). Engineering tenofovir loaded chitosan nanoparticles to maximize microbicide mucoadhesion. European Journal of Pharmaceutical Sciences, 44(1-2), 57-67.
21. Morakul, B., Suksiriworapong, J., Chomnawang, M. T., Langguth, P., & Junyaprasert, V. B. (2014). Dissolution enhancement and in vitro performance of clarithromycin nanocrystals produced by precipitation–lyophilization–homogenization method. European Journal of Pharmaceutics and Biopharmaceutics, 88(3), 886-896.
22. Morakul, B., Suksiriworapong, J., Chomnawang, M. T., Langguth, P., & Junyaprasert, V. B. (2014). Dissolution enhancement and in vitro performance of clarithromycin nanocrystals produced by precipitation–lyophilization–homogenization method. European Journal of Pharmaceutics and Biopharmaceutics, 88(3), 886-896.
23. Muhamad12, I. I., Selvakumaran, S., & Lazim, N. A. M. (2014). Designing polymeric nanoparticles for targeted drug delivery system. Nanomed, 287, 287.
24. Nascimento, A. V., Singh, A., Bousbaa, H., Ferreira, D., Sarmento, B., & Amiji, M. M. (2014). Mad2 checkpoint gene silencing using epidermal growth factor receptor-targeted chitosan nanoparticles in non- small cell lung cancer model. Molecular pharmaceutics, 11(10), 3515-3527.
25. Pangestuti, R., & Kim, S. K. (2010). Neuroprotective properties of chitosan and its derivatives. Marine Drugs, 8(7), 2117-2128.
26. Pena, A., Pelantova, N., Lino, C. M., Silveira, M. I. N., & Solich, P. (2005). Validation of an analytical methodology for determination of oxytetracycline and tetracycline residues in honey by HPLC with fluorescence detection. Journal of agricultural and food chemistry, 53(10), 3784-3788.
27. Ragelle, H., Riva, R., Vandermeulen, G., Naeye, B., Pourcelle, V., Le Duff, C. S., ... & Jérôme, C. (2014). Chitosan nanoparticles for siRNA delivery: optimizing formulation to increase stability and efficiency. Journal of Controlled Release, 176, 54-63.
28. Ramalingam, M., Jabbari, E., Ramakrishna, S., & Khademhosseini, A. (Eds.). (2013). Micro and nanotechnologies in engineering stem cells and tissues (Vol. 39). John Wiley & Sons.
29. Scott, N. R. (2005). Nanotechnology and animal health. Revue Scientifique Et Technique-Office International Des Epizooties, 24(1), 425.
30. Solano Umaña, V., Vega Baudrit, J., & González Paz, R. J. (2015). The new field of the nanomedicine.
31. Tanase, S., Tsuchiya, H., Yao, J., Ohmoto, S., Takagi, N., & Yoshida, S. (1998). Reversed-phase ion-pair chromatographic analysis of tetracycline antibiotics: application to discolored teeth. Journal of Chromatography B: Biomedical Sciences and Applications, 706(2), 279-285.
32. Thomas‐Jinu, S., & Goodwin, A. E. (2004). Acute columnaris infection in channel catfish, Ictalurus punctatus (Rafinesque): efficacy of practical treatments for warmwater aquaculture ponds. Journal of Fish Diseases, 27(1), 23-28.
33. Vimal, S., Majeed, S. A., Taju, G., Nambi, K. S. N., Raj, N. S., Madan, N., ... & Hameed, A. S. (2013). RETRACTED: Chitosan tripolyphosphate (CS/TPP) nanoparticles: Preparation, characterization and application for gene delivery in shrimp.
34. Wang, J. J., Zeng, Z. W., Xiao, R. Z., Xie, T., Zhou, G. L., Zhan, X. R., & Wang, S. L. (2011). Recent advances of chitosan nanoparticles as drug carriers. International journal of nanomedicine, 6, 765.
35. Wang, M., Zhang, Y., Feng, J., Gu, T., Dong, Q., Yang, X., ... & Kong, W. (2013). Preparation, characterization, and in vitro and in vivo investigation of chitosan-coated poly (d, l-lactide-co-glycolide) nanoparticles for intestinal delivery of exendin-4. International journal of nanomedicine, 8, 1141.
36. Wang, X., Chi, N., & Tang, X. (2008). Preparation of estradiol chitosan nanoparticles for improving nasal absorption and brain targeting. European journal of pharmaceutics and biopharmaceutics, 70(3), 735-740.
37. Wardani, G., & Sudjarwo, S. A. (2018). In vitro antibacterial activity of chitosan nanoparticles against Mycobacterium tuberculosis. Pharmacognosy Journal, 10(1).
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.