A Review of Investigations About Geometry Shape and Discharge Coefficient of Side Weirs
DOI:
https://doi.org/10.61841/x109vw97Keywords:
side weirs, discharge coefficient, geometry shape, hydraulic structure, side weirs overviewAbstract
The side weir is a hydraulic structure constructed longitudinally on the side of the main channel and is mainly used to reduce the flood wave and irrigate the lands. This study provides an overview of the side weirs and investigations about the geometry shape and discharge coefficient of the side weirs. The discharge coefficient equations depend mainly on the Froude number. Some dimensionless variables are used to study the discharge coefficient in conjunction with the Froude number, such as the ratio of side weir height to the headwater on the crest and the opening side weir length to the crest width. On the other hand, the length of the crest is considered a determinant for the selection of the side weir, where the dams with a long crest, such as W-shaped, labyrinth, and piano key side weirs, allow the passage of discharge through them higher than rectangular side weirs by 1.5-7.5 times.
Downloads
References
1. Abdollahi, A., Kabiri-Samani, A., Asghari, K., Atoof, H., & Bagheri, S. (2017). Numerical modeling of flow
field around the labyrinth side-weirs in the presence of guide vanes. ISH Journal of Hydraulic Engineering,
23(1), 71-79.
2. Abhash, A., & Pandey, K. (2020). A review of Piano Key Weir as a superior alternative for dam
rehabilitation. ISH Journal of Hydraulic Engineering, 1-11.
3. ACKERS, P., COLEMAN, SMITH, & BERNOULLI. (1957). A THEORETICAL CONSIDERATION OF
SIDE WEIRS AS STORMWATER OVERFLOWS. HYDRAULICS PAPER NO. 11. SYMPOSIUM OF
FOUR PAPERS ON SIDE SPILLWAYS. Proceedings of the Institution of Civil Engineers, 6(2), 250-269.
4. Al-Safi, H. (2020). Experimental Work of the Flow Field around Drop Inlets in Roadway Drainage System
during the rainfall event. Journal of Water Science and Engineering, 1(5), 1-9.
5. Anderson, R., & Tullis, B. (2011). Influence of Piano Key Weir geometry on discharge. Paper presented at
the Proc. Int. Conf. Labyrinth and Piano Key Weirs Liège B.
6. Ansari, U., & Patil, L. (2020). Numerical analysis of triangular labyrinth side weir in triangular channel. ISH Journal of Hydraulic Engineering, 1-8.
7. Aydin, M. C. (2012). CFD simulation of free-surface flow over a triangular labyrinth side weir. Advances in Engineering Software,1), 159-166.
8. Aydin, M. C., & Emiroglu, M. E. (2013). Determination of capacity of labyrinth side weir by CFD. Flow Measurement and Instrumentation, 29, 1-8.
9. Aydin, M. C., & Emiroglu, M. E. (2016). Numerical analysis of subcritical flow over a two-cycle trapezoidal labyrinth side weir. Flow Measurement and Instrumentation, 48, 20-28.
10. Bagheri, S., & Heidarpour, M. (2012). Characteristics of flow over rectangular sharp-crested side weirs.
Journal of Irrigation and Drainage Engineering, 138(6), 541-547.
11. Borghei, S., Jalili, M., & Ghodsian, M. (1999). Discharge coefficient for sharp-crested side weir in subcritical
flow. Journal of Hydraulic Engineering, 125(10), 1051-1056.
12. Botha, A., Fitz, I., Moore, A., Mulder, F., & Van Deventer, N. (2013). Application of the Piano Key Weir
spillway in the Republic of South Africa. Labyrinth and Piano Key Weirs II, 20-22.
13. Bremen, R., & Hager, W. H. (1989). Experiments in side-channel spillways. Journal of Hydraulic
Engineering, 115(5), 617-635.
14. Bromwich, B., Rickard, C., Gasowski, Y., & May, R. (2003). Hydraulic design of side weirs.
15. Cheong, H.-F. (1991). Discharge coefficient of lateral diversion from trapezoidal channel. Journal of
Irrigation and Drainage Engineering, 117(4), 461-475.
16. Coşar, A., & Agaccioglu, H. (2004). Discharge coefficient of a triangular side-weir located on a curved
channel. Journal of Irrigation and Drainage Engineering, 130(5), 410-423.
17. Da Singhal, G., & Sharma, N. (2011). Rehabilitation of Sawara Kuddu Hydroelectric Project—Model Studies of Piano Key Weir in India. Paper presented at the Proc. Intl. Workshop on Labyrinths and Piano Key Weirs PKW 2011.
18. De Marchi, G. (1934). Saggio Diteoria de Funzionamente Degli Stramazzi Laterali. L'Energia Elettrica.
19. Dursun, O. F., Kaya, N., & Firat, M. (2012). Estimating the discharge coefficient of a semi-elliptical side weir using ANFIS. Journal of Hydrology, 426, 55-62.
20. Eichenberger, P. (2013). The first commercial piano key weir was in Switzerland. Labyrinth and Piano Key Weirs II, 20-22.
21. El-Khashab, A., & Smith, K. V. (1976). Experimental investigation of flow over side weirs. Journal of the Hydraulics Division, 102(9), 1255-1268.
22. Emiroglu, M. E., Agaccioglu, H., & Kaya, N. (2011). Discharging capacity of rectangular side weirs in straight open channels. Flow Measurement and Instrumentation, 22(4), 319-330.
23. Emiroglu, M. E., Kaya, N., & Agaccioglu, H. (2010). Discharge capacity of labyrinth side weir located on a straight channel. Journal of Irrigation and Drainage Engineering, 136(1), 37-46.
24. Erpicum, S., Machiels, O., Dewals, B., Pirotton, M., & Archambeau, P. (2012). Numerical and physical hydraulic modelling of piano key weirs. Paper presented at the Proceedings of the 4th Int. Conf. on Water Resources and Renewable Energy Development in Asia.
25. Frazer, W. (1957). THE BEHAVIOR OF SIDE WEIRS IN PRISMATIC RECTANGULAR CHANNELS.
HYDRAULICS PAPER NO. 14. SYMPOSIUM OF FOUR PAPERS ON SIDE SPILLWAYS. Proceedings
of the Institution of Civil Engineers, 6(2), 305-328.
26. Gabl, R., Gems, B., Plörer, M., Klar, R., Gschnitzer, T., Achleitner, S., & Aufleger, M. (2014). Numerical
simulations in hydraulic engineering Computational engineering (pp. 195-224): Springer.
27. Ghodsian, M. (2003). Supercritical flow over a rectangular side weir. Canadian Journal of Civil Engineering,
30(3), 596-600.
28. Hien, T. C., Son, H. T., & Khanh, M. H. T. (2006). Results of some piano keys' weir hydraulic model tests in
Vietnam. Paper presented at the Proc. of the 22nd Congress of ICOLD, Barcelona, Spain.
29. Hoseini, S. H., Jahromi, S. M., & Vahid, M. R. (2013). Determination of discharge coefficient of rectangular
broad-crested side weir in trapezoidal channel by CFD. International Journal of Hydraulic Engineering, 2(4),
64-70.
30. IKINCIOGULLARI, E., & EMIROGLU, M. E. (2019). ESTIMATION OF TRIANGULAR LABYRINTH
SIDE WEIR DISCHARGE CAPACITY USING SCHMIDT APPROACH. Sigma: Journal of Engineering
& Natural Sciences/Mühendislik ve Fen Bilimleri Dergisi.
31. Javaheri, A., & Kabiri-Samani, A. (2012). Threshold submergence of flow over PK weirs. International Journal of Civil and Geological Engineering, 17(5), 88-93.
32. Jayatillake, H., & Perera, K. (2013). Design of a Piano-Key Weir for Giritale Dam Spillway in Sri Lanka. Labyrinth and Piano Key Weirs II, 151.
33. Jayatillake, H., & Perera, K. (2017). Adoption of a type D Piano Key Weir spillway with tapered noses at Rambawa Tank, Sri Lanka. Paper presented at the Labyrinth and Piano Key Weirs III: Proceedings of the 3rd International Workshop on Labyrinth and Piano Key Weirs (PKW 2017), February 22-24, 2017, Qui Nhon, Vietnam.
34. Kaya, N., Emiroglu, M. E., & Agaccioglu, H. (2011). Discharge coefficient of a semi-elliptical side weir in subcritical flow. Flow Measurement and Instrumentation, 22(1), 25-32.
35. Khalili, M., & Honar, T. (2017). Discharge coefficient of semi-circular labyrinth side weir in subcritical flow. Water SA, 43(3), 433-441.
36. Khanh, M. H. T., Hien, T. C., & Hai, N. T. (2011). Main results of the PK weir model tests in Vietnam (2004 to 2010). Labyrinth and piano key weirs, 191.
37. Khassaf, S. I., Attiyah, A. N., & Al-Yousify, H. A. (2016). Experimental investigation of compound side weir with modeling using computational fluid dynamics. International Journal of Energy and Environment, 7(2), 169.
38. Kisi, O., Emiroglu, M. E., Bilhan, O., & Guven, A. (2012). Prediction of lateral outflow over triangular
labyrinth side weirs under subcritical conditions using soft computing approaches. Expert systems with
Applications, 39(3), 3454-3460.
39. Laugier, F. (2007). Design and construction of the first Piano Key Weir spillway at Goulours dam.
International journal on hydropower and dams, 14(5), 94.
40. Laugier, F., Lochu, A., Gille, C., Leite Ribeiro, M., & Boillat, J.-L. (2009). Design and construction of a
labyrinth PKW spillway at Saint-Marc dam, France. Hydropower & Dams, 16(ARTICLE), 100-107.
41. Laugier, F., Pralong, J., & Blancher, B. (2011). Influence of structural thickness of sidewalls on PKW spillway
discharge capacity. Paper presented at the Proc. Intl Workshop on Labyrinths and Piano Key Weirs PKW
2011.
42. Le Blanc, M., Spinazzola, U., & Kocahan, H. (2011). Labyrinth fusegate applications on free overflow
spillways–Overview of recent projects. Labyrinth and piano key weirs, 261.
43. Lempérière, F., & Ouamane, A. (2003). The Piano Keys weir: a new cost-effective solution for spillways.
International Journal on Hydropower & Dams, 10(5), 144-149.
44. Lempérière, F., & Vigny, J. (2011). General comments on Labyrinth and Piano Key Weirs: The future. Paper
presented at the Proc Int Conf Labyrinth Piano Key Weirs-PKW2011, London: Taylor & Francis.
45. Mahmodinia, S., Javan, M., & Eghbalzadeh, A. (2014). The effects of side-weir height on the free surface turbulent flow. KSCE Journal of Civil Engineering, 18(7), 2244-2251.
46. Mamand, B. S., & Raheem, A. M. (2018). Discharge Coefficients for Different Types of Side Weirs. Zanco Journal of Pure and Applied Sciences, 30(1), 24-31.
47. Mohammed, W. A., Al-Dulaimi, M. H. A., & Alfatlawi, T. (2019). Effect of rapid drawdown water in upstream Al-wand dam by using goe-studio software. International Journal of Civil Engineering and Technology, 10, 735-745.
48. Nandesamoorthy, T., & Thomson, A. (1972). Discussion of spatially varied flow over side weir. ASCE Journal of the Hydraulics Division, 98(12), 2234-2235.
49. Ouamane, A., Debabeche, M., Lempérière, F., & Vigny, J. (2017). Twenty years of research in Biskra University for Labyrinths and Piano Key Weirs and associated fuse plugs. Paper presented at the Labyrinth and Piano Key Weirs III: Proceedings of the 3rd International Workshop on Labyrinth and Piano Key Weirs (PKW 2017), February 22-24, 2017, Qui Nhon, Vietnam.
50. Parsaie, A., & Haghiabi, A. H. (2017). Improving modelling of discharge coefficient of triangular labyrinth lateral weirs using SVM, GMDH and MARS techniques. Irrigation and drainage, 66(4), 636-654.
51. Phillips, M., & Lesleighter, E. (2013). Piano Key Weir spillway: Upgrade option for a major dam. Labyrinth and Piano Key Weirs II, 159-168.
52. Pinchard, T., Boutet, J., & Cicero, G. (2011). Spillway capacity upgrade at Malarce dam: Design of an
additional Piano Key Weir spillway. Paper presented at the Proc. Intl Workshop on Labyrinths and Piano
Key Weirs PKW 2011.
53. Pralong, J., Vermeulen, J., Blancher, B., Laugier, F., Erpicum, S., Machiels, O., . . . Schleiss, A. (2011). A
naming convention for the piano key weirs geometrical parameters. Labyrinth and piano key weirs, 271-278.
54. Ramamurthy, A. S., & Carballada, L. (1980). Lateral weir flow model. Journal of the Irrigation and
Drainage Division, 106(1), 9-25.
55. Ranga Raju, K. G., Gupta, S. K., & Prasad, B. (1979). Side weir in rectangular channel. Journal of the
Hydraulics Division, 105(5), 547-554.
56. Singh, R., Manivannan, D., & Satyanarayana, T. (1994). Discharge coefficient of rectangular side weirs.
Journal of Irrigation and Drainage Engineering, 120(4), 814-819.
57. Subramanya, K., & Awasthy, S. C. (1972). Spatially varied flow over side-weirs. Journal of the Hydraulics
Division, 98(1), 1-10.
58. Swamee, P. K., Pathak, S. K., & Ali, M. S. (1994). Side-weir analysis using elementary discharge coefficient.
Journal of Irrigation and Drainage Engineering, 120(4), 742-755.
59. Tiwari, H., & Sharma, N. (2017). Turbulence study in the vicinity of piano key weir: relevance, instrumentation, parameters and methods. Applied Water Science, 7(2), 525-534.
60. Uyumaz, A., & Muslu, Y. (1985). Flow over side weirs in circular channels. Journal of Hydraulic Engineering, 111(1), 144-160.
61. Valley, P., & Blancher, B. (2017). Construction and testing of two Piano Key Weirs at Charmines dam. Paper presented at the Labyrinth and Piano Key Weirs III: Proceedings of the 3rd International Workshop on Labyrinth and Piano Key Weirs (PKW 2017), February 22-24, 2017, Qui Nhon, Vietnam.
62. Yu-Tech, L. (1972). Discussion of spatially varied flow over side weir. J Hydraul Eng ASCE, 98(11), 2046-2048.
Downloads
Published
Issue
Section
License
Copyright (c) 2020 AUTHOR

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.