Optimization of In-house PCR Assay for Human BCL-2 Gene

Authors

  • Henny Saraswati Universitas Esa Unggul Author
  • Anita Nauli Pulungan Universitas Esa Unggul Author
  • Aroem Naroeni Universitas Esa Unggu, Widyatama University Author
  • Esa Fauzi Widyatama University Author

DOI:

https://doi.org/10.61841/bqm7v790

Keywords:

Apoptotic mechanism, BCL-2 gene, Polymerase Chain Reaction

Abstract

BCL-2 gene is present on human chromosome 18 and contributes in regulating the mechanism of apoptotic cells. Mutations and overexpression of the BCL-2 gene are known to be associated with several cancers. Comprehensive research on the role of BCL-2 in the incidence of cancer is needed to understand course of the diseases and treatment. Polymerase Chain Reaction (PCR) method for copying the BCL-2 gene can be used in this research. Optimization of the in-house PCR reaction was carried out to determine the optimal conditions of the PCR reaction on the doubling of the BCL-2 gene. In-silico analysis of the primer design produces three pairs of primers used in the optimization process. The parameters used in this optimization are the annealing temperature and primer concentration used. Validation of the results of optimization of the PCR reaction was carried out by biopsy samples of tumor tissue of patients with cervical tissue abnormalities. The result showed that the best primer pairs of the reaction is primer C with optimal annealing temperature is 570C and 800 nM concentration. 

Downloads

Download data is not yet available.

References

1. Sengupta, P., Chattopadhyay, S. & Chatterjee, S. G-Quadruplex surveillance in BCL-2 gene: a promising therapeutic intervention in cancer treatment. Drug Discov. Today 22, 1165–1186 (2017).

2. Czabotar, P. E., Lessene, G., Strasser, A. & Adams, J. M. Control of apoptosis by the BCL-2 protein family: Implications for physiology and therapy. Nat. Rev. Mol. Cell Biol. 15, 49–63 (2014).

3. Bruni, L. et al. Human Papillomavirus and Related Diseases Report. ICO/IARC Inf. Cent. HPV Cancer (HPV Inf. Centre) 307 (2019).

4. Markham, N. R. & Zuker, M. DINAMelt web server for nucleic acid melting prediction. Nucleic Acids Res. 33, 577–581 (2005).

5. Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415 (2003).

6. Research, Z. Quick -DNA Miniprep Plus Kit. (Zymo Research Corp., 2019).

7. Bioline. MyTaq TM HS DNA Polymerase. www.bioline.com (2018).

8. Perini, G. F., Ribeiro, G. N., Pinto Neto, J. V., Campos, L. T. & Hamerschlak, N. BCL-2 as therapeutic target for hematological malignancies. J. Hematol. Oncol. 11, 1–15 (2018).

9. Amir, A. Ekspresi Gen Family Bcl-2 dan Ekspresi Gen Protein Kanal Ion Vdac1 pada Oligozoospermia. J. Kesehat. Andalas 3, 123–127 (2014).

10. Correia, C. et al. Emerging understanding of Bcl-2 biology: Implications for neoplastic progression and treatment. Biochim. Biophys. Acta - Mol. Cell Res. 1853, 1658–1671 (2015).

11. Yu, Y. et al. Significance of c-Myc and Bcl-2 Protein Expression in Nasopharyngeal Carcinoma. Arch. Otolaryngol. - Head Neck Surg. 129, 1322–1326 (2003).

12. Loreto, C. et al. The role of intrinsic pathway in apoptosis activation and progression in Peyronie’s disease. Biomed Res. Int. 2014, (2014).

13. Judelson, H. Guidelines for Designing Primers. 1–5 (2012).

14. Thermofisher. PCR Cycling Parameters — Six Key Considerations for Success. 8 (2018).

Downloads

Published

29.02.2020

How to Cite

Saraswati, H., Nauli Pulungan , A., Naroeni, A., & Fauzi, E. (2020). Optimization of In-house PCR Assay for Human BCL-2 Gene. International Journal of Psychosocial Rehabilitation, 24(1), 2810-2816. https://doi.org/10.61841/bqm7v790