Solving the Travelling Salesman Problem (Tsp) Using Saving Matrix Method (Case Study at Company of Xyz)

Authors

  • Muchammad Fauzi Industrial Engineering Department, Engineering Faculty, Widyatama University Author
  • Arief Rahmana Widyatama University Author
  • Verani Hartati Widyatama University Author

DOI:

https://doi.org/10.61841/tyrc2a08

Keywords:

distribution, transportation, saving values

Abstract

One of the keys to success in implementing supply chain management is to implement a good distribution and transportation network strategy. Transportation and distribution management is designing, organizing, commanding, coordinating, and controlling the process of moving objects or goods from the point of origin to the point of destination to facilitate the delivery of goods and/or services from producers to consumers. The purpose of this study is to show the best routes taken by considering demand and transport capacity. Saving Matrix Methods to obtain the most appropriate and optimal product shipping routes to minimize transportation costs and obtain transportation cost savings. Based on the results of the discussion on the application of the Saving matrix method, the distribution route by considering the demand per week and the transport capacity per one transport is O  B  C  O  D  A  O. Because of the once transport capacity of 105 gallons, after pickup sent to destination B and C, pickups must return to O to load gallons to be distributed to destinations D and A. 

Downloads

Download data is not yet available.

References

[1] Suparjo. (2017). Metode Saving Matric Sebagai Metode Alternatif Untuk Efisiensi Biaya Distribusi. Media Ekonomi dan Manajemen, 137-153.

[2] Sianipar, M., Fu'ani, D., Sutopo, W., & Hisjam, M. (2017). Penentuan Rute KEndaraan Menggunakan Metode Clark and Wright Saving Heuristic. Performa, 143-151.

[3] Supriyadi, Mawardi, K., & Nalhadi, A. (2017). Minimasi Biaya Dalam Penentuan Rute Distribusi Produk Minuman Menggunakan Metode Savings Matrix. Seminar Nasional Institut Supply Chain dan Logistik Indonesia (ISLI) (pp. 1-7). Gowa: Departemen Teknik Industri Universitas Hasanuddin.

[4] Fauzi, M., & Anwar, A. (2019). Solving The Travelling Salesman Problem (TSP) Using Branch and Bound Method . International Journal of Innovation, Creativity and Change, 228-234.

[5] Chois, M., Kurniawan L, J., & Sihombing, S. (2018). Manajemen Logistik dan Transportasi. Bogor: Penerbit IN MEDIA.

[6] Adicitra Bhirawa. (2020, Februari Rabu). Konstruksi Kendaraan Niaga Adicitra. Retrieved from adicitra.co.id: https://www.adicitra.co.id/index.php?l=2&i=11

[7] Sejahtera Houseware. (2020, Februari Rabu). Sejahtera Houseware. Retrieved from sejahtera.co.id: https://www.sejahtera.co.id/produk/detail/620-botol-aqua-galon-19-liter/

[8] Sarjono, H. (2014). Determination of Best Route to Minimize Transportation Costs Using Nearest Neighbor Procedure. Applied Mathematical Sciences, 3063-3074.

[9] Tirtawening PDAM Kota Bandung. (2020, Februari Kamis). Tirtawening PDAM Kota Bandung. Retrieved from pambdg.co.id: https://pambdg.co.id

[10] Badan Pusat Statistik Kota Bandung. (2020, Februari Kamis). Badan Pusat Statistik Kota Bandung. Retrieved from bandungkota. bps.go. id: https://bandungkota.bps.go.id/dynamictable/2020/02/11/278/jumlah-pendududuk-menurutjenis-kelamin-dan-kecamatan-di-kota-bandung-2018-2019.html

[11] Nasution, M. N. (2004). Manajemen Transportasi. Jakarta: Ghalia Indonesia.

[12] Momon S, A., & Ardiatma, D. W. (2018). Penentuan Rute Distribusi Suku Cadang Kendaraan Bermotor dalam Meminimalkan Biaya Transportasi. Journal of Industrial Engineering and Management Systems, 17-24.

Downloads

Published

30.04.2020

How to Cite

Fauzi, M., Rahmana, A., & Hartati, V. (2020). Solving the Travelling Salesman Problem (Tsp) Using Saving Matrix Method (Case Study at Company of Xyz). International Journal of Psychosocial Rehabilitation, 24(2), 8289-8296. https://doi.org/10.61841/tyrc2a08