TOOTH REGENERATION - A REVIEW

Authors

  • Ashwini .K Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai-77,Tamil Nadu,India Author
  • Dr.Jayalakshmi Somasundaram Chief Scientist, White Lab-Material research center, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai-77,Tamil Nadu,India Author
  • Vinay Sivaswamy Senior Lecturer, Department of Prosthodontics and Implantology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai-77,Tamil Nadu,India Author

DOI:

https://doi.org/10.61841/4z6sfy31

Keywords:

whole tooth regeneration, stem cells, 3D scaffold bioengineering

Abstract

Introduction: Dental problems caused by caries, PDL disease, and injury to the tooth compromise oral health issues resulting in loss of tooth, thereby affecting the quality of human life. There are several artificial therapies introduced into dentistry to compensate for the loss of tooth structure and avulsed tooth structures, i.e., inorganic fillings, RCT, RPD, FPD, CD, and even implants. They tend to fail at times. The current advances in dentistry include regenerative therapy, stem cell biotechnology, and tissue engineering for 3D scaffolds. In this review, we focus on the recent findings and technologies relevant to whole teeth regenerative therapy.

Materials and methods: The articles and journals pertaining to this topic were searched over Pubmed, Google Scholar, Semantic Scholar, MeSH Core, Elsevier, and Medline. Articles related to tooth regeneration, stem cell-based regeneration, and scaffolds were included. Wherein articles irrelevant to these topics are excluded. The data was collected from 2000 to 2020.

Discussion: Regenerative therapies for whole tooth regeneration are a novel therapeutic concept. Dental stem cells and activating cytokines have a candidate approach for tooth regeneration and the potential to differentiate tooth regeneration in vitro or in vivo and form a functional tooth. 3D tissue engineering for the bioengineered scaffolds regenerates organogenesis. They have several biomedical applications and have high bioactivity. A bioengineered tooth was also able to perform the same functions as a physiological tooth. The stem cells play an efficient role in the formation of tooth structures too.

Conclusion: Though tooth embryogenesis takes a longer duration, it is highly effective and promotes mental well-being. There is also huge potential for 3D printing of tissue engineering. Tooth regenerative therapy is actually a future regenerative technology. 

Downloads

Download data is not yet available.

References

1. Nanci A. Ten Cate’s Oral Histology - E-Book: Development, Structure, and Function [Internet]. Elsevier Health Sciences; 2017. 352 p. Available from: https://play.google.com/store/books/details?id=XR0xDwAAQBAJ

2. Angelova AV, Zaugg LK, Neves V, Liu Y, Sharpe PT, Others. Tooth Repair and Regeneration. Current oral health reports [Internet]. 2018;5(4):295–303. Available from: https://europepmc.org/articles/pmc6244610

3. Sarver DM, Proffit WR, Fields HW. Contemporary orthodontics [Internet]. Elsevier; 2007. Available from: http://125.234.102.146:8080/dspace/handle/DNULIB_52011/6101

4. Siddique R, Sureshbabu NM, Somasundaram J, Jacob B, Selvam D. Qualitative and quantitative analysis of precipitate formation following interaction of chlorhexidine with sodium hypochlorite, neem, and tulsi. J Conserv Dent [Internet]. 2019 Jan;22(1):40–7. Available from: http://dx.doi.org/10.4103/JCD.JCD_284_18

5. Rajakeerthi R, Ms N. Natural Product as the Storage medium for an avulsed tooth – A Systematic Review. 2019 Jun 11 [cited 2020 Jun 6] ; 22 (2):249–56. Available from: https://www.researchgate.net/publication/333706221_Natural_Product_as_the_Storage_medium_for_an_avulse

d_tooth_-_A_Systematic_Review

6. Ramamoorthi S, Nivedhitha MS, Divyanand MJ. Comparative evaluation of postoperative pain after using endodontic needle and Endo Activator during root canal irrigation: A randomised controlled trial. Aust Endod J [Internet]. 2015 Aug;41(2):78–87. Available from: http://dx.doi.org/10.1111/aej.12076

7. Ramanathan S, Solete P. Cone-beam Computed Tomography Evaluation of Root Canal Preparation using Various Rotary Instruments: An in vitro Study. J Contemp Dent Pract [Internet]. 2015 Nov 1;16(11):869–72. Available from: http://dx.doi.org/10.5005/jp-journals-10024-1773

8. Nasim I, Hussainy S, Thomas T, Ranjan M. Clinical performance of resin-modified glass ionomer

cement, flowable composite, and polyacid-modified resin composite in noncarious cervical lesions: One-year

follow-up [Internet]. Vol. 21, Journal of Conservative Dentistry. 2018. p. 510. Available from:

http://dx.doi.org/10.4103/jcd.jcd_51_18

9. Kumar D, Delphine Priscilla Antony S. Calcified Canal and Negotiation-A Review. Research Journal

of Pharmacy and Technology [Internet]. 2018 Aug 31 [cited 2020 Jun 6];11(8):3727–30. Available from:

https://rjptonline.org/AbstractView.aspx?PID=2018-11-8-88

10. Pokorny PH, Wiens JP, Litvak H. Occlusion for fixed prosthodontics: a historical perspective of the

gnathological influence. J Prosthet Dent [Internet]. 2008 Apr;99(4):299–313. Available from:

http://dx.doi.org/10.1016/S0022-3913(08)60066-9

11. Jose J, P. A, Subbaiyan H. Different Treatment Modalities followed by Dental Practitioners for Ellis

Class 2 Fracture – A Questionnaire-based Survey [Internet]. Vol. 14, The Open Dentistry Journal. 2020. p. 59–

65. Available from: http://dx.doi.org/10.2174/1874210602014010059

12. Balic A. Biology Explaining Tooth Repair and Regeneration: A Mini-Review. Gerontology [Internet].

2018 Mar 13;64(4):382–8. Available from: http://dx.doi.org/10.1159/000486592

13. Zhai Q, Dong Z, Wang W, Li B, Jin Y. Dental stem cell and dental tissue regeneration. Front Med

[Internet]. 2019 Apr;13(2):152–9. Available from: http://dx.doi.org/10.1007/s11684-018-0628-x

14. Morsczeck C, Reichert TE. Dental stem cells in tooth regeneration and repair in the future. Expert Opin

Biol Ther [Internet]. 2018 Feb;18(2):187–96. Available from:

http://dx.doi.org/10.1080/14712598.2018.1402004

15. Oshima M, Mizuno M, Imamura A, Ogawa M, Yasukawa M, Yamazaki H, et al. Functional tooth

regeneration using a bioengineered tooth unit as a mature organ replacement regenerative therapy. PLoS One

[Internet]. 2011 Jul 12;6(7):e21531. Available from: http://dx.doi.org/10.1371/journal.pone.0021531

16. Rajendran R, Kunjusankaran RN, Sandhya R, Anilkumar A, Santhosh R, Patil SR. Comparative

Evaluation of Remineralizing Potential of a Paste Containing Bioactive Glass and a Topical Cream Containing

Casein Phosphopeptide-Amorphous Calcium Phosphate: An in Vitro Study. Pesqui Bras Odontopediatria Clin

Integr [Internet]. 2019 [cited 2020 Jun 6];19. Available from: https://www.scielo.br/scielo.php?pid=S1983-

46322019000100364&script=sci_arttext

17. Nandakumar M, Nasim I. Comparative evaluation of grape seed and cranberry extracts in preventing

enamel erosion: An optical emission spectrometric analysis. J Conserv Dent [Internet]. 2018 Sep;21(5):516–20.

Available from: http://dx.doi.org/10.4103/JCD.JCD_110_18

18. Ravinthar K, Jayalakshmi. Recent Advancements in Laminates and Veneers in Dentistry. Research

Journal of Pharmacy and Technology [Internet]. 2018 Feb 28 [cited 2020 Jun 6];11(2):785–7. Available from:

https://rjptonline.org/AbstractView.aspx?PID=2018-11-2-70

19. Noor SSSE, S Syed Shihaab, Pradeep. Chlorhexidine: Its properties and effects [Internet]. Vol. 9,

Research Journal of Pharmacy and Technology. 2016. p. 1755. Available from: http://dx.doi.org/10.5958/0974-

360x.2016.00353.x

20. Teja KV, Ramesh S, Priya V. Regulation of matrix metalloproteinase-3 gene expression in

inflammation: A molecular study. J Conserv Dent [Internet]. 2018 Nov;21(6):592–6. Available from:

http://dx.doi.org/10.4103/JCD.JCD_154_18

21. Teja KV, Ramesh S. Shape optimal and clean more. Saudi Endodontic Journal [Internet]. 2019 Sep 1

[cited 2020 Jun 6];9(3):235. Available from: http://www.saudiendodj.com/article.asp?issn=1658-

5984;year=2019;volume=9;issue=3;spage=235;epage=236;aulast=Teja

22. Mao AS, Mooney DJ. Regenerative medicine: Current therapies and future directions. Proc Natl Acad

Sci U S A [Internet]. 2015 Nov 24;112(47):14452–9. Available from:

http://dx.doi.org/10.1073/pnas.1508520112

23. Yu T, Volponi AA, Babb R, An Z, Sharpe PT. Stem Cells in Tooth Development, Growth, Repair, and

Regeneration. Curr Top Dev Biol [Internet]. 2015 Oct 1;115:187–212. Available from:

http://dx.doi.org/10.1016/bs.ctdb.2015.07.010

24. Slack JMW. Origin of stem cells in organogenesis. Science [Internet]. 2008 Dec 5;322(5907):1498–

501. Available from: http://dx.doi.org/10.1126/science.1162782

25. Scadden DT. The stem-cell niche as an entity of action. Nature [Internet]. 2006 Jun

29;441(7097):1075–9. Available from: http://dx.doi.org/10.1038/nature04957

26. Li L, Tang Q, Wang A, Chen Y. Regrowing a tooth: in vitro and in vivo approaches. Curr Opin Cell

Biol [Internet]. 2019 Dec;61:126–31. Available from: http://dx.doi.org/10.1016/j.ceb.2019.08.002

27. Volponi AA, Pang Y, Sharpe PT. Stem cell-based biological tooth repair and regeneration. Trends Cell

Biol [Internet]. 2010 Dec;20(12):715–22. Available from: http://dx.doi.org/10.1016/j.tcb.2010.09.012

28. van Laake LW, Passier R, Doevendans PA, Mummery CL. Human embryonic stem cell-derived

cardiomyocytes and cardiac repair in rodents. Circ Res [Internet]. 2008 May 9;102(9):1008–10. Available from:

http://dx.doi.org/10.1161/CIRCRESAHA.108.175505

29. Alt-Holland A, Sowalsky AG, Szwec-Levin Y, Shamis Y, Hatch H, Feig LA, et al. Suppression of Ecadherin function drives the early stages of Ras-induced squamous cell carcinoma through upregulation of FAK

and Src. J Invest Dermatol [Internet]. 2011 Nov;131(11):2306–15. Available from:

http://dx.doi.org/10.1038/jid.2011.188

30. Otsu K, Kumakami-Sakano M, Fujiwara N, Kikuchi K, Keller L, Lesot H, et al. Stem cell sources for

tooth regeneration: current status and future prospects. Front Physiol [Internet]. 2014 Feb 4;5:36. Available

from: http://dx.doi.org/10.3389/fphys.2014.00036

31. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs)

in vitro and in vivo. Proc Natl Acad Sci U S A [Internet]. 2000 Dec 5;97(25):13625–30. Available from:

http://dx.doi.org/10.1073/pnas.240309797

32. Janani K, Palanivelu A, Sandhya R. Diagnostic accuracy of dental pulse oximeter with customized

sensor holder, thermal test and electric pulp test for the evaluation of pulp vitality - An in vivo study. 2020 Jan

31 [cited 2020 Jun 6];23(1). Available from:

https://www.researchgate.net/publication/338959944_Diagnostic_accuracy_of_dental_pulse_oximeter_with_cu

stomized_sensor_holder_thermal_test_and_electric_pulp_test_for_the_evaluation_of_pulp_vitality_-

_An_in_vivo_study

33. Jo Y-Y, Lee H-J, Kook S-Y, Choung H-W, Park J-Y, Chung J-H, et al. Isolation and characterization

of postnatal stem cells from human dental tissues. Tissue Eng [Internet]. 2007 Apr;13(4):767–73. Available

from: http://dx.doi.org/10.1089/ten.2006.0192

34. Yamada Y, Ueda M, Naiki T, Takahashi M, Hata K-I, Nagasaka T. Autogenous injectable bone for

regeneration with mesenchymal stem cells and platelet-rich plasma: tissue-engineered bone regeneration. Tissue

Eng [Internet]. 2004 May;10(5-6):955–64. Available from: http://dx.doi.org/10.1089/1076327041348284

35. Huang GT-J, Gronthos S, Shi S. Mesenchymal stem cells derived from dental tissues vs. those from

other sources: their biology and role in regenerative medicine. J Dent Res [Internet]. 2009 Sep;88(9):792–806.

Available from: http://dx.doi.org/10.1177/0022034509340867

36. Timothy CN, Samyuktha PS, Brundha MP. Dental pulp Stem Cells in Regenerative Medicine – A Literature Review. J Adv Pharm Technol Res [Internet]. 2019;12(8):4052. Available from:

http://www.indianjournals.com/ijor.aspx?target=ijor:rjpt&volume=12&issue=8&article=088

37. Nakamura S, Yamada Y, Katagiri W, Sugito T, Ito K, Ueda M. Stem cell proliferation pathways

comparison between human exfoliated deciduous teeth and dental pulp stem cells by gene expression profile

from promising dental pulp. J Endod [Internet]. 2009 Nov;35(11):1536–42. Available from:

http://dx.doi.org/10.1016/j.joen.2009.07.024

38. Website [Internet]. [cited 2020 Jun 5]. Available from: Cordeiro MM, Dong Z, Kaneko T, Zhang Z,

Miyazawa M, Shi S, et al. Dental pulp tissue engineering with stem cells from exfoliated deciduous teeth. J

Endod [Internet]. 2008 Aug;34(8):962–9. Available from: http://dx.doi.org/10.1016/j.joen.2008.04.009

39. Shi S, Seo B-M, Miura M. Multipotent postnatal stem cells from human periodontal ligament and uses

thereof [Internet]. US Patent. 9210925, 2015 [cited 2020 Jun 5]. Available from:

https://patentimages.storage.googleapis.com/f4/89/4b/bab33f5337045d/US9210925.pdf

40. Yildirim S. Isolation Methods of Dental Pulp Stem Cells. In: Yildirim S, editor. Dental Pulp Stem Cells

[Internet]. New York, NY: Springer New York; 2013. p. 41–51. Available from: https://doi.org/10.1007/978-1-

4614-5687-2_5

41. Sonoyama W, Liu Y, Fang D, Yamaza T, Seo B-M, Zhang C, et al. Mesenchymal stem cell-mediated

functional tooth regeneration in swine. PLoS One [Internet]. 2006 Dec 20;1:e79. Available from:

http://dx.doi.org/10.1371/journal.pone.0000079

42. Huang GT-J, -J. Huang GT, Sonoyama W, Liu Y, Liu H, Wang S, et al. The Hidden Treasure in Apical

Papilla: The Potential Role in Pulp/Dentin Regeneration and BioRoot Engineering [Internet]. Vol. 34, Journal of

Endodontics. 2008. p. 645–51. Available from: http://dx.doi.org/10.1016/j.joen.2008.03.001

43. Coura GS, Garcez RC, de Aguiar CBNM, Alvarez-Silva M, Magini RS, Trentin AG. Human

periodontal ligament: a niche of neural crest stem cells [Internet]. Vol. 43, Journal of Periodontal Research.

2008. p. 531–6. Available from: http://dx.doi.org/10.1111/j.1600-0765.2007.01065.x

44. Website [Internet]. [cited 2020 Jun 5]. Available from: Morsczeck C, Götz W, Schierholz J, Zeilhofer

F, Kühn U, Möhl C, et al. Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix

Biol [Internet]. 2005 Apr;24(2):155–65. Available from: http://dx.doi.org/10.1016/j.matbio.2004.12.004

45. Yao S, Pan F, Prpic V, Wise GE. Differentiation of stem cells in the dental follicle. J Dent Res

[Internet]. 2008 Aug;87(8):767–71. Available from: http://dx.doi.org/10.1177/154405910808700801

46. Rincon JC, Young WG, Bartold PM. The epithelial cell rests of Malassez--a role in periodontal

regeneration? J Periodontal Res [Internet]. 2006 Aug;41(4):245–52. Available from:

http://dx.doi.org/10.1111/j.1600-0765.2006.00880.x

47. Xiong J, Gronthos S, Bartold PM. Role of the epithelial cell rests of Malassez in the development,

maintenance and regeneration of periodontal ligament tissues. Periodontol 2000 [Internet]. 2013 Oct;63(1):217–

33. Available from: http://dx.doi.org/10.1111/prd.12023

48. Yildirim O, Li R, Hung J-H, Chen PB, Dong X, Ee L-S, et al. Mbd3/NURD complex regulates

expression of 5-hydroxymethylcytosine marked genes in embryonic stem cells. Cell [Internet]. 2011 Dec

23;147(7):1498–510. Available from: http://dx.doi.org/10.1016/j.cell.2011.11.054

49. Oshima M, Tsuji T. Whole Tooth Regeneration as a Future Dental Treatment. Adv Exp Med Biol

[Internet]. 2015;881:255–69. Available from: http://dx.doi.org/10.1007/978-3-319-22345-2_14

50. Oshima M, Tsuji T. Whole Tooth Regeneration Using a Bioengineered Tooth. New Trends in Tissue

Engineering and Regenerative Medicine Nagoya: IntechOpen [Internet]. 2014;109–19. Available from:

https://books.google.co.in/books?hl=en&lr=&id=QGmQDwAAQBAJ&oi=fnd&pg=PA109&dq=oshima+et+al+ 2011+tissue+engineering&ots=-Q6_5zDqK0&sig=pXHYqWFK28AZ1J8YRnOnrZGbbbA

51. Liu F, Chu EY, Watt B, Zhang Y, Gallant NM, Andl T, et al. Wnt/β-catenin signaling directs multiple

stages of tooth morphogenesis. Dev Biol [Internet]. 2008 Jan 1;313(1):210–24. Available from:

http://www.sciencedirect.com/science/article/pii/S0012160607014601

52. Park CH, Rios HF, Jin Q, Bland ME, Flanagan CL, Hollister SJ, et al. Biomimetic hybrid scaffolds for engineering human tooth-ligament interfaces. Biomaterials [Internet]. 2010 Aug;31(23):5945–52. Available from: http://dx.doi.org/10.1016/j.biomaterials.2010.04.027

53. Kim RY, Bae SS, Feinberg SE. Soft Tissue Engineering. Oral Maxillofac Surg Clin North Am [Internet]. 2017 Feb;29(1):89–104. Available from: http://dx.doi.org/10.1016/j.coms.2016.08.007

54. Valmikinathan CM, Tian J, Wang J, Yu X. Novel nanofibrous spiral scaffolds for neural tissue engineering. J Neural Eng [Internet]. 2008;5(4):422. Available from: https://iopscience.iop.org/article/10.1088/1741-2560/5/4/007/meta

55. Ma PX. Scaffolds for tissue fabrication. Mater Today [Internet]. 2004 May 1;7(5):30–40. Available from: http://www.sciencedirect.com/science/article/pii/S1369702104002330

56. Liu J, Yan C. 3D printing of scaffolds for tissue engineering. In: 3D Printing [Internet]. IntechOpen; 2018. Available from:

https://books.google.co.in/bookshl=en&lr=&id=c1mRDwAAQBAJ&oi=fnd&pg=PA137&dq=Jingyu+Liu+et+al+2018+internal+porous+structure&ots=6xx-EVqzNa&sig=k206YIZpUW13f-FF4QjFHHKkDmA

57. Young CS, Terada S, Vacanti JP, Honda M, Bartlett JD, Yelick PC. Tissue engineering of complex tooth structures on biodegradable polymer scaffolds. J Dent Res [Internet]. 2002 Oct;81(10):695–700. Available from: http://dx.doi.org/10.1177/154405910208101008

58. Manohar MP, Sharma S. A survey of the knowledge, attitude, and awareness about the principal choice of intracanal medicaments among the general dental practitioners and nonendodontic specialists. Indian J Dent Res [Internet]. 2018 Nov;29(6):716–20. Available from: http://dx.doi.org/10.4103/ijdr.IJDR_716_16

59. Farhat Yaasmeen Sadique Basha, Rajeshkumar S, Lakshmi T, Anti-inflammatory activity of Myristica fragrans extract . Int. J. Res. Pharm. Sci., 2019 ;10(4), 3118-3120 DOI: https://doi.org/10.26452/ijrps.v10i4.1607

Downloads

Published

30.04.2020

How to Cite

.K, A., Somasundaram, J., & Sivaswamy, V. (2020). TOOTH REGENERATION - A REVIEW. International Journal of Psychosocial Rehabilitation, 24(2), 6458-6466. https://doi.org/10.61841/4z6sfy31