Impact of Chitosan Nanoparticles Loaded Oxytetracycline Hydrochloride for Drug Delivery Against Flavobacterium Columnare Isolated From Common Carp (Cyprinus CarpioL.)

Authors

  • Medyan N Ali Department of Pathology, College of Veterinary Medicine,University of Baghdad, Baghdad, Iraq Author
  • Jamal K. A AL-Faragi Department of Pathology, College of Veterinary Medicine,University of Baghdad, Baghdad, Iraq Author
  • Tagreed M Al-Saadi College of Education for Pure Science/Ibn Al Haitham, University of Baghdad, Baghdad, Iraq Author

DOI:

https://doi.org/10.61841/ge8fpb67

Keywords:

ChitosanNanoparticle, Oxytetracycline, Ionic gelation, Encapsulation Efficiency

Abstract

This present study investigates a new method for oxytetracycline (OTC) application through the use of Chitosan nanoparticles (ChNPs) as drug delivery, used the ionic gelation method for preparation of chitosan nanoparticles and it's loaded. Also characterized the properties particle size, shape, encapsulation efficiency, and antibacterial activity against F.columnare isolated from common carp. The formulations are spherical.The diameter of chitosan nanoparticles size varying from 10-15 nm and chitosan nanoparticles loaded oxytetracycline(ChNPs-OTC) in size about 20 nm. With high encapsulation efficiency ranging from 99.4% to 99.8%. Antibacte¬rial activity was in vitro against Flavobacterium columnare using a good diffusion method, 5 concentrations of ChNPs-OTC (20,15,10,5, and 2.5 µg/ml) with 20ug/ml of blank oxytetracycline as control positive. The higher inhibition zone was recorded in ChNPs-OTC with higher concentration. These results suggest that ChNPs-OTC show possible using the delivery of drugs and improved treatment effectiveness for bacterial fish diseases.

Downloads

Download data is not yet available.

References

1. Abdel-Fattah, W. I., Sallam, A. S. M., Atwa, N. A., Salama, E., Maghraby, A. M., & Ali, G. W. (2014).

Functionality, antibacterial efficiency and biocompatibility of nanosilver/chitosan/silk/phosphate scaffolds

1. Synthesis and optimization of nanosilver/chitosan matrices through gamma rays irradiation and their

antibacterial activity. Materials Research Express, 1(3), 035024.

2. Alishahi, A., Mirvaghefi, A., Tehrani, M. R., Farahmand, H., Koshio, S., Dorkoosh, F. A., & Elsabee, M.

Z. (2011). Chitosan nanoparticle to carry vitamin C through the gastrointestinal tract and induce the non

specific immunity system of rainbow trout (Oncorhynchus mykiss). Carbohydrate polymers, 86(1), 142

146.

3. Amini, H., & Ahmadiani, A. (2005). Sensitive determination of clarithromycin in human plasma by high

performance liquid chromatography with spectrophotometric detection. Journal of Chromatography

B, 817(2), 193-197.

4. Avadi, M. R., Sadeghi, A. M. M., Tahzibi, A., Bayati, K. H., Pouladzadeh, M., Zohuriaan-Mehr, M. J., &

Rafiee-Tehrani, M. (2004). Diethylmethyl chitosan as an antimicrobial agent: Synthesis, characterization

and antibacterial effects. European Polymer Journal, 40(7), 1355-1361.

5. Azhdarzadeh, M., Lotfipour, F., Zakeri-Milani, P., Mohammadi, G., & Valizadeh, H. (2012). Anti-bacterial

performance of azithromycin nanoparticles as colloidal drug delivery system against different gram

negative and gram-positive bacteria. Advanced pharmaceutical bulletin, 2(1), 17.

6. Bohloli Khiavi, R. (2017). Methods for in vitro evaluating antimicrobial activity: A review. Laboratory &

Diagnosis, 9(35), 43-53.

7. Chopra, I., & Roberts, M. (2001). Tetracycline antibiotics: mode of action, applications, molecular biology,

and epidemiology of bacterial resistance. Microbiology and molecular biology reviews, 65(2), 232-260.

8. Cover, N. F., Lai-Yuen, S., Parsons, A. K., & Kumar, A. (2012). Synergetic effects of doxycycline-loaded

chitosan nanoparticles for improving drug delivery and efficacy. International journal of nanomedicine, 7,

2411.

9. Csaba, N., & Alonso, M. J. (2014). 12. Biodegradable polymer nanoparticles as protein delivery systems:

Original research articles: Design of biodegradable particles for protein delivery (2002), Chitosan

nanoparticles as delivery systems for doxorubicin (2001); design of microencapsulated chitosan

microspheres for colonic drug delivery (1998). Journal of controlled release: official journal of the

Controlled Release Society, 190, 53.

10. Darwish, A. M., Rawles, S. D., & Griffin, B. R. (2002). Laboratory efficacy of oxytetracycline for the

control of Streptococcus iniae infection in blue tilapia. Journal of Aquatic Animal Health, 14(3), 184-190.

11. De Jong, W. H., & Borm, P. J. (2008). Drug delivery and nanoparticles: applications and

hazards. International journal of nanomedicine, 3(2), 133.

12. Du, W. L., Niu, S. S., Xu, Y. L., Xu, Z. R., & Fan, C. L. (2009). Antibacterial activity of chitosan

tripolyphosphate nanoparticles loaded with various metal ions. Carbohydrate polymers, 75(3), 385-389.

13. E’atelaf, A. (2015). Role of Chitosan Application in Postoperative Abdominal Adhesions in Rabbits. The

Iraqi Journal of Veterinary Medicine (ISSN-P: 1609-5693 ISSN-E: 2410-7409), 39(1), 105-111.

14. Erdogdu AT (2012), Using antibiotics in aquatic living beings, rational use of antibiotics and antimicrobial

resistance symposium, Ankara, Turkey, pp 87-95.

15. Gan, Q., Wang, T., Cochrane, C., & MaCarron, P. (2005). Modulation of surface charge, particle size and

morphological properties of chitosan–TPP nanoparticles included for gene delivery. Colloids and Surfaces

B: Biointerfaces, 44, 65–73.

16. Ghadi, A., Mahjoub, S., Tabandeh, F., & Talebnia, F. (2014). Synthesis and optimization of chitosan

nanoparticles: Potential applications in nanomedicine and biomedical engineering. Caspian journal of

internal medicine, 5(3), 156.

17. Jain, D., & Banerjee, R. (2008). Comparison of ciprofloxacin hydrochloride‐loaded protein, lipid, and

chitosan nanoparticles for drug delivery. Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials,

and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 86(1), 105-112.

18. Khanmohammadi, M., Elmizadeh, H., & Ghasemi, K. (2015). Investigation of size and morphology of

chitosan nanoparticles used in drug delivery system employing chemometric technique. Iranian journal of

pharmaceutical research: IJPR, 14(3), 665.

19. Lee, Y. S., Jang, K., & Cha, J. D. (2012). Synergistic antibacterial effect between silibinin and antibiotics

in oral bacteria. Journal of Biomedicine and Biotechnology, 2012.

20. Meng, J., Sturgis, T. F., & Youan, B. B. C. (2011). Engineering tenofovir loaded chitosan nanoparticles to

maximize microbicide mucoadhesion. European Journal of Pharmaceutical Sciences, 44(1-2), 57-67.

21. Morakul, B., Suksiriworapong, J., Chomnawang, M. T., Langguth, P., & Junyaprasert, V. B. (2014).

Dissolution enhancement and in vitro performance of clarithromycin nanocrystals produced by

precipitation–lyophilization–homogenization method. European Journal of Pharmaceutics and

Biopharmaceutics, 88(3), 886-896.

22. Morakul, B., Suksiriworapong, J., Chomnawang, M. T., Langguth, P., & Junyaprasert, V. B. (2014).

Dissolution enhancement and in vitro performance of clarithromycin nanocrystals produced by

precipitation–lyophilization–homogenization method. European Journal of Pharmaceutics and

Biopharmaceutics, 88(3), 886-896.

23. Muhamad12, I. I., Selvakumaran, S., & Lazim, N. A. M. (2014). Designing polymeric nanoparticles for

targeted drug delivery system. Nanomed, 287, 287.

24. Nascimento, A. V., Singh, A., Bousbaa, H., Ferreira, D., Sarmento, B., & Amiji, M. M. (2014). Mad2

checkpoint gene silencing using epidermal growth factor receptor-targeted chitosan nanoparticles in non

small cell lung cancer model. Molecular pharmaceutics, 11(10), 3515-3527.

25. Pangestuti, R., & Kim, S. K. (2010). Neuroprotective properties of chitosan and its derivatives. Marine

Drugs, 8(7), 2117-2128.

26. Pena, A., Pelantova, N., Lino, C. M., Silveira, M. I. N., & Solich, P. (2005). Validation of an analytical

methodology for determination of oxytetracycline and tetracycline residues in honey by HPLC with

fluorescence detection. Journal of agricultural and food chemistry, 53(10), 3784-3788.

27. Ragelle, H., Riva, R., Vandermeulen, G., Naeye, B., Pourcelle, V., Le Duff, C. S., ... & Jérôme, C. (2014).

Chitosan nanoparticles for siRNA delivery: optimizing formulation to increase stability and

efficiency. Journal of Controlled Release, 176, 54-63.

28. Ramalingam, M., Jabbari, E., Ramakrishna, S., & Khademhosseini, A. (Eds.). (2013). Micro and

nanotechnologies in engineering stem cells and tissues (Vol. 39). John Wiley & Sons.

29. Scott, N. R. (2005). Nanotechnology and animal health. Revue Scientifique Et Technique-Office

International Des Epizooties, 24(1), 425.

30. Solano Umaña, V., Vega Baudrit, J., & González Paz, R. J. (2015). The new field of the nanomedicine.

31. Tanase, S., Tsuchiya, H., Yao, J., Ohmoto, S., Takagi, N., & Yoshida, S. (1998). Reversed-phase ion-pair

chromatographic analysis of tetracycline antibiotics: application to discolored teeth. Journal of

Chromatography B: Biomedical Sciences and Applications, 706(2), 279-285.

32. Thomas‐Jinu, S., & Goodwin, A. E. (2004). Acute columnaris infection in channel catfish, Ictalurus

punctatus (Rafinesque): efficacy of practical treatments for warmwater aquaculture ponds. Journal of Fish

Diseases, 27(1), 23-28.

33. Vimal, S., Majeed, S. A., Taju, G., Nambi, K. S. N., Raj, N. S., Madan, N., ... & Hameed, A. S. (2013).

RETRACTED: Chitosan tripolyphosphate (CS/TPP) nanoparticles: Preparation, characterization and

application for gene delivery in shrimp.

34. Wang, J. J., Zeng, Z. W., Xiao, R. Z., Xie, T., Zhou, G. L., Zhan, X. R., & Wang, S. L. (2011). Recent

advances of chitosan nanoparticles as drug carriers. International journal of nanomedicine, 6, 765.

35. Wang, M., Zhang, Y., Feng, J., Gu, T., Dong, Q., Yang, X., ... & Kong, W. (2013). Preparation,

characterization, and in vitro and in vivo investigation of chitosan-coated poly (d, l-lactide-co-glycolide)

nanoparticles for intestinal delivery of exendin-4. International journal of nanomedicine, 8, 1141.

36. Wang, X., Chi, N., & Tang, X. (2008). Preparation of estradiol chitosan nanoparticles for improving nasal

absorption and brain targeting. European journal of pharmaceutics and biopharmaceutics, 70(3), 735-740.

37. Wardani, G., & Sudjarwo, S. A. (2018). In vitro antibacterial activity of chitosan nanoparticles against

Mycobacterium tuberculosis. Pharmacognosy Journal, 10(1).

Downloads

Published

30.04.2020

How to Cite

Ali, M. N., AL-Faragi, J. K. A., & Al-Saadi , T. M. (2020). Impact of Chitosan Nanoparticles Loaded Oxytetracycline Hydrochloride for Drug Delivery Against Flavobacterium Columnare Isolated From Common Carp (Cyprinus CarpioL.) . International Journal of Psychosocial Rehabilitation, 24(4), 9745-9757. https://doi.org/10.61841/ge8fpb67