Traditional Herbal Treatment for Plasmodium Falciparum: A Systematic Review on Traditional Plants to Treat Malaria in Iran
DOI:
https://doi.org/10.61841/8545sh18Keywords:
Herbal treatment, Malaria, Plasmodium Falciparum, Plant biodiversityAbstract
Background and Objective: Malaria is a vector-borne disease of global importance, with the vast majority of its life-threatening cases caused by infection with Plasmodium falciparum parasites. A marked decrease in malaria-related deaths worldwide has been attributed to the administration of effective antimalarials against Plasmodium falciparum. Considering the great potential of Iran in terms of plant biodiversity, rich traditional knowledge and practice, and malaria endemicity in the southeast of Iran. The present systematic review attempted to explore, synthesize, and compile medicinal research findings on antimalarial plants in Iran.
Material and Method: The searches were conducted by three independent researchers to find the relevant studies published from January 1999 until the end of December 2018. We searched for published literature in the English language in MEDLINE via PubMed, EMBASE™ via Ovid, the Cochrane Library, and the TRIP database. The keywords used in the search strategy were malaria, Plasmodium falciparum, herbal medicine, traditional medicine, antimalaria treatment, and anti-parasitic herbs.
Results: Detailed findings from five studies identified a total of forty-one different plant species used in traditional malaria treatments throughout Iran. Khouzestan province represents the most antimalarial species, followed by Golestan. Aerial parts and flowers were the most frequently used plant parts. Six plants, including Citrullus colocynthis, Buxus hyrcana, Physalis alkekengi, Glycyrrhiza glabra, Glycyrrhiza glabra, and Ferula oopoda, showed more antiplasmodial activity than others, with IC50 values ranging from 2.01 to 26.6 μg/mlst K1 (chloroquine-resistant) or 3D7 (chloroquine-sensitive).
Conclusion: The investigated medicinal plants gathered in this article as a systematic review could be a key to identifying the compounds with antimalarial effects.
Downloads
References
1. Kalra BS, Chawla S, Gupta P, Valecha N. Screening of antimalarial drugs: An overview. Indian Journal of Pharmacology. 2006;38(1):5.
2. Mirahmadi H, Fallahi S, Tabaei SJS. Soluble recombinant merozoite surface antigen-142 kDa of Plasmodium vivax: an improved diagnostic antigen for vivax malaria. Journal of Microbiological Methods. 2016;123:44-50.
3. Keeling P, Rayner J. The origins of malaria: there are more things in heaven and earth…. Parasitology. 2015;142(S1):S16-S25.
4. Organization WH. Malaria: fact sheet. World Health Organization. Regional Office for the Eastern Mediterranean; 2014.
5. Weiss DJ, Lucas TC, Nguyen M, Nandi AK, Bisanzio D, Battle KE, et al. Mapping the global
prevalence, incidence, and mortality of Plasmodium falciparum, 2000–17: a spatial and temporal
modeling study. The Lancet. 2019;394(10195):322-31.
6. Hay SI, Okiro EA, Gething PW, Patil AP, Tatem AJ, Guerra CA, et al. Estimating the global clinical
burden of Plasmodium falciparum malaria in 2007. PLoS Med. 2010;7(6):e1000290.
7. Nadjm B, Behrens RH. Malaria: An update for physicians. Infectious Disease Clinics. 2012;26(2):243-
59.
8. Caraballo H, King K. Emergency department management of mosquito-borne illness: malaria, dengue,
and West Nile virus. Emergency Medicine Practice. 2014;16(5):1-23; quiz -4.
9. Brabin B, Dorman E, Beales P. Severe falciparum malaria. World Health Organization, Communicable
Disease Cluster. Transactions of the Royal Society of Tropical Medicine and Hygiene. 2000.
10. Malaria W. Fact sheet, Geneva: World Health Organization; 2018. 2019.
11. Ebrahimzadeh A, Dalir SN, Mirahmadi H, Mehravaran A, Khorashad AS, Turki H. The incidence of current infection with different human malaria species by polymerase chain reaction for diagnosis of suspicious malaria patients in the elimination region of Sistan and Baluchistan province, southeast of Iran. Jundishapur Journal of Microbiology. 2017;10(10).
12. Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, et al. Spread of artemisinin
resistance in Plasmodium falciparum malaria. New England Journal of Medicine. 2014;371(5):411-23.
13. Malaria RB, Organization WH. The use of antimalarial drugs. Report of a WHO informal consultation
Geneva: WHO. 2001.
14. Mutabingwa TK. Artemisinin-based combination therapies (ACTs): best hope for malaria treatment but
inaccessible to the needy! Acta tropica. 2005;95(3):305-15.
15. Le Tran Q, Tezuka Y, Ueda J-y, Nguyen NT, Maruyama Y, Begum K, et al. In vitro antiplasmodial
activity of antimalarial medicinal plants used in Vietnamese traditional medicine. Journal of
Ethnopharmacology. 2003;86(2-3):249-52.
16. Wanyoike G, Chhabra S, Lang‟at-Thoruwa C, Omar S. Brine shrimp toxicity and antiplasmodial activity
of five Kenyan medicinal plants. Journal of Ethnopharmacology. 2004;90(1):129-33.
17. Abai M, Mehravaran A, Vatandoost H, Oshaghi M, Javadian E, Mashayekhi M, et al. Comparative
performance of imagicides on Anopheles stephensi, main malaria vector in a malarious area, southern
Iran. J Vector Borne Dis. 2008;45(4):307-12.
18. Takala-Harrison S, Jacob CG, Arze C, Cummings MP, Silva JC, Dondorp AM, et al. Independent
emergence of artemisinin resistance mutations among Plasmodium falciparum in Southeast Asia. The
Journal of Infectious Diseases. 2015;211(5):670-9.
19. Tun KM, Imwong M, Lwin KM, Win AA, Hlaing TM, Hlaing T, et al. Spread of artemisinin-resistant
Plasmodium falciparum in Myanmar: a cross-sectional survey of the K13 molecular marker. The Lancet
infectious diseases. 2015;15(4):415-21.
20. Wang J, Zhang C-J, Chia WN, Loh CC, Li Z, Lee YM, et al. Heme-activated promiscuous targeting of
artemisinin in Plasmodium falciparum. Nature Communications. 2015;6(1):1-11.
21. Ghorbal M, Gorman M, Macpherson CR, Martins RM, Scherf A, Lopez-Rubio J-J. Genome editing in the
human malaria parasite Plasmodium falciparum using the CRISPR-Cas9 system. Nature biotechnology.
2014;32(8):819.
22. Mok S, Ashley EA, Ferreira PE, Zhu L, Lin Z, Yeo T, et al. Population transcriptomics of human malaria
parasites reveals the mechanism of artemisinin resistance. Science. 2015;347(6220):431-5.
23. Ataide R, Ashley EA, Powell R, Chan J-A, Malloy MJ, O‟Flaherty K, et al. Host immunity to
Plasmodium falciparum and the assessment of emerging artemisinin resistance in a multinational cohort.
Proceedings of the National Academy of Sciences. 2017;114(13):3515-20.
24. Veiga MI, Dhingra SK, Henrich PP, Straimer J, Gnädig N, Uhlemann A-C, et al. Globally prevalent
PfMDR1 mutations modulate Plasmodium falciparum susceptibility to artemisinin-based combination
therapies. Nature Communications. 2016;7(1):1-12.
25. Ménard D, Khim N, Beghain J, Adegnika AA, Shafiul-Alam M, Amodu O, et al. A worldwide map of
Plasmodium falciparum K13-propeller polymorphisms. New England Journal of Medicine.
2016;374(25):2453-64.
26. Straimer J, Gnadig N, Witkowski B, Amaratunga C, Duru V, Ramadani A, et al. Drug resistance. K13-
Propeller mutations confer artemisinin resistance in 2015.
27. Karamati SA, Hassanzadazar H, Bahmani M, Rafieian Kopaei M. Herbal and chemical drugs effective on
malaria. Asian Pacific Journal of Tropical Disease. 2014;4(S2):S599-S601.
28. Edrissian G, Shahabi S, Pishva E, Hajseyed-Javadi J, Khaleghian B, Ghorbani M, et al. Imported cases of
chloroquine-resistant falciparum malaria in Iran. Bulletin de la Société de pathologie exotique et de ses
filiales. 1986;79(2):217-21.
29. Hunde D, Asfaw Z, Kelbessa E. Use of traditional medicinal plants by people of "Boosat subdistrict,
Central Eastern Ethiopia. Ethiopian Journal of Health Sciences. 2006;16(2).
30. Esmaeili S, Naghibi F, Mosaddegh M, Sahranavard S, Ghafari S, Abdullah NR. Screening of antiplasmodial properties among some traditionally used Iranian plants. Journal of Ethnopharmacology. 2009;121(3):400-4.
31. Abebe E. Ethnobotanical study on medicinal plants used by local communities in Debark Wereda, North Gondar Zone, Amhara Regional State, Ethiopia: Addis Ababa University; 2011.
32. Philip K, Elizabeth MM, Cheplogoi PK, Samuel KT. Ethnobotanical survey of antimalarial medicinal plants used in Butebo County, Eastern Uganda. European Journal of Medicinal Plants. 2017:1-22.
33. Azas N, Laurencin N, Delmas F, Di Giorgio C, Gasquet M, Laget M, et al. Synergistic in vitro antimalarial activity of plant extracts used as traditional herbal remedies in Mali. Parasitology research. 2002;88(2):165-71.
34. Obbo C, Kariuki S, Gathirwa J, Olaho-Mukani W, Cheplogoi P, Mwangi E. In vitro antiplasmodial, antitrypanosomal, and antileishmanial activities of selected medicinal plants from Ugandan flora: refocusing into multi-component potentials. Journal of Ethnopharmacology. 2019;229:127-36.
35. Muganza DM, Fruth B, Lami JN, Mesia G, Kambu O, Tona G, et al. In vitro antiprotozoal and cytotoxic
activity of 33 ethonopharmacologically selected medicinal plants from Democratic Republic of Congo.
Journal of ethnopharmacology. 2012;141(1):301-8.
36. Silva JRdA, Ramos AdS, Machado M, de Moura DF, Neto Z, Canto-Cavalheiro MM, et al. A review of
antimalarial plants used in traditional medicine in communities in Portuguese-speaking countries: Brazil,
Mozambique, Cape Verde, Guinea-Bissau, São Tomé and Príncipe and Angola. Memorias do Instituto
Oswaldo Cruz. 2011;106:142-58.
37. Alebie G, Urga B, Worku A. Systematic review on traditional medicinal plants used for the treatment of
malaria in Ethiopia: trends and perspectives. Malaria journal. 2017;16(1):307.
38. Waako P, Katuura E, Smith P, Folb P. East African medicinal plants as a source of lead compounds for
the development of new antimalarial drugs. African Journal of Ecology. 2007;45:102-6.
39. Chierrito TPC, Cunha A, De C, Koike L, Gonçalves R, Oliveira A, et al. Use of associated
chromatographic techniques in bio-monitored isolation of bioactive monoterpenoid indole alkaloids from
Aspidosperma ramiflorum. Chromatography and Its Applications. 2012;7:119-30.
40. Bhatnagar S, Das P. Antimalarial activity in tropical plants: a review. Journal of herbs, spices &
medicinal plants. 2007;13(1):103-32.
41. Barku V, Opoku-Boahen Y, Dzotsi E. Isolation and pharmacological activities of alkaloids from
Cryptolepis sanguinolenta (Lindl) schlt. Int Res J Biochem Bioinform. 2012;2:58-61.
42. e Silva LR, Montoia A, Amorim R, Melo M, Henrique M, Nunomura SM, et al. Comparative in vitro and
in vivo antimalarial activity of the indole alkaloids ellipticine, olivacine, cryptolepine and a synthetic
cryptolepine analog. Phytomedicine. 2012;20(1):71-6.
43. dos Santos Torres ZE, Silveira ER, Rocha e Silva LF, Lima ES, De Vasconcellos MC, de Andrade Uchoa
DE, et al. Chemical composition of Aspidosperma ulei Markgr. and antiplasmodial activity of selected
indole alkaloids. Molecules. 2013;18(6):6281-97.
44. Ayuko TA, Njau RN, Cornelius W, Leah N, Ndiege IO. In vitro antiplasmodial activity and toxicity
assessment of plant extracts used in traditional malaria therapy in the Lake Victoria Region. Memórias do
Instituto Oswaldo Cruz. 2009;104(5):689-94.
45. Schwikkard S, van Heerden FR. Antimalarial activity of plant metabolites. Natural Product Reports.
2002;19(6):675-92.
46. Muthaura C, Keriko J, Mutai C, Yenesew A, Gathirwa J, Irungu B, et al. Antiplasmodial potential of
traditional phytotherapy of some remedies used in treatment of malaria in Meru–Tharaka Nithi County of
Kenya. Journal of ethnopharmacology. 2015;175:315-23.
47. Mpiana P, Ngbolua K, Mudogo V, Tshibangu D, Atibu E, Mbala B, et al. The potential effectiveness of
medicinal plants used for the treatment of Sickle cell Disease in the Democratic Republic of Congo folk
medicine: A review. Progress in Traditional and Folk herbal medicine. 2012;1:1-11.
48. Stangeland T, Alele PE, Katuura E, Lye KA. Plants used to treat malaria in Nyakayojo sub-county,
western Uganda. Journal of ethnopharmacology. 2011;137(1):154-66.
49. Didier DS, Emmanuel MM, Alfred N, France KM, Lagarde BJ. Ethnobotanique et phytomédecine des
plantes médicinales de Douala, Cameroun. Journal of Applied Biosciences. 2011;37:2496-507.
50. Anywar G, van‟t Klooster CI, Byamukama R, Wilcox M, Nalumansi PA, de Jong J, et al. Medicinal
plants used in the treatment and prevention of malaria in Cegere Sub-County, Northern Uganda.
Ethnobotany Research and applications. 2016;14:505-16.
51. Petersen I, Gabryszewski SJ, Johnston GL, Dhingra SK, Ecker A, Lewis RE, et al. Balancing drug
resistance and growth rates via compensatory mutations in the P lasmodium falciparum chloroquine
resistance transporter. Molecular microbiology. 2015;97(2):381-95.
52. Dhingra SK, Redhi D, Combrinck JM, Yeo T, Okombo J, Henrich PP, et al. A variant PfCRT isoform
can contribute to Plasmodium falciparum resistance to the first-line partner drug piperaquine. MBio.
2017;8(3):e00303-17.
53. Blasco B, Leroy D, Fidock DA. Antimalarial drug resistance: linking Plasmodium falciparum parasite
biology to the clinic. Nature medicine. 2017;23(8):917.
54. Costa GL, Amaral LC, Fontes CJF, Carvalho LH, de Brito CFA, de Sousa TN. Assessment of copy
number variation in genes related to drug resistance in Plasmodium vivax and Plasmodium falciparum
isolates from the Brazilian Amazon and a systematic review of the literature. Malaria journal.
2017;16(1):152.
55. Tshibangu PT, Kapepula PM, Kapinga MK, Mukuta AT, Kalenda DT, Tchinda AT, et al. Antiplasmodial
activity of Heinsia crinita (Rubiaceae) and identification of new iridoids. Journal of ethnopharmacology.
2017;196:261-6.
56. Kiplagat DM, Akala HM, Liyala PO, Wangui JM, Odhiambo RA, Omolo JO. Antiplasmodial activity of
flavan derivatives from rootbark of Cassia abbreviata Oliv. Journal of Saudi Chemical Society.
2016;20:S140-S4.
57. Appiah-Opong R, Nyarko A, Dodoo D, Gyang F, Koram K, Ayisi N. Antiplasmodial activity of extracts
of Tridax procumbens and Phyllanthus amarus in in vitro Plasmodium falciparum culture systems. Ghana
medical journal. 2011;45(4).
58. Owuor B, Ochanda J, Kokwaro J, Cheruiyot A, Yeda R, Okudo C, et al. In vitro antiplasmodial activity
of selected Luo and Kuria medicinal plants. Journal of ethnopharmacology. 2012;144(3):779-81.
59. Okokon JE, Antia BS, Mohanakrishnan D, Sahal D. Antimalarial and antiplasmodial activity of husk
extract and fractions of Zea mays. Pharmaceutical biology. 2017;55(1):1394-400.
60. Zemicheal G, Mekonnen Y. Antiplasmodial activity of Vernonia adoensis aqueous, methanol and
chloroform leaf extracts against chloroquine sensitive strain of Plasmodium berghei in vivo in mice.
BMC research notes. 2018;11(1):736.
61. Sangian H, Faramarzi H, Yazdinezhad A, Mousavi SJ, Zamani Z, Noubarani M, et al. Antiplasmodial
activity of ethanolic extracts of some selected medicinal plants from the northwest of Iran. Parasitology
research. 2013;112(11):3697-701.
62. Soma A, Sanon S, Gansané A, Ouattara LP, Ouédraogo N, Nikiema J-B, et al. Antiplasmodial activity of
Vernonia cinerea Less (Asteraceae), a plant used in traditional medicine in Burkina Faso to treat malaria.
African Journal of Pharmacy and Pharmacology. 2017;11(5):87-93.
Downloads
Published
Issue
Section
License
Copyright (c) 2020 AUTHOR

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.