The Role of Caspases in Inflammatory Responses against Gram Negative Infections

Authors

  • Ali Hussein Alwan University of Mustansiriyah, College of Science, Department of Biology, Ministry of Science and Technology, Water and Environmental Directory, Food Contamination Research Center Author
  • Noor Ibrahim Khadhim University of Mustansiriyah, College of Science, Department of Biology, Ministry of Science and Technology, Water and Environmental Directory, Food Contamination Research Center Author
  • Areej Zuhair Azeez University of Mustansiriyah, College of Science, Department of Biology, Ministry of Science and Technology, Water and Environmental Directory, Food Contamination Research Center Author

DOI:

https://doi.org/10.61841/4dqtaj75

Keywords:

Pseudomonas Aeruginosa, Flagillin, Flic, Caspase-1, IL-1β

Abstract

Pseudomonas aeruginosa has emerged as one of the most difficult nosocomial pathogens. The present study aims to estimate the role of caspases in inflammatory responses against Pseudomonas aeruginosa infection. This study was performed on 50 isolates from infected patients. The diagnosis isolates depending on the macroscopic, microscopic, biochemical, and API20E tests. Results show that the percentage of isolates according to clinical sources were (38%) from burns, (24%) from urine, (6%) from ear swabs, (20%) from sputum, and (12%) from wounds. Different abilities to resist antibiotics included amoxicillin-clavulanic acid, trimethoprim-sulfamethoxazole, and erythromycin, which are effective against P. aeruginosa. The ability of biofilm formation as a virulence factor by the microtiter plate method (MTP) resulted in the revelation that 92% of P. aeruginosa have the ability to form biofilm. Molecular diagnosis of isolates implemented by the 16SrDNA gene, in addition to detecting the virulence gene (Flic gene), showed that 90% of isolates were positive. The results of the CASP-1 patients sequencing showed 70% have heterozygous nucleotides, and the level of IL-1β showed no significant differences between infected and non-infected individuals. Comparison between IL-1β level and patients age group, where the F, G, and H groups revealed a significant difference. The comparison between sources of infection recorded higher significant differences between cystic fibrosis compared with wound and UTI sources. 

Downloads

Download data is not yet available.

References

[1] Brooks, G. F.; Carroll, K. C.; Butel, J. S.; Morse, S. A. (2007). Jawetz, Melnick, and Adedberg's Medical Microbiology (24th ed.).The McGraw-Hill, USA, pp. 818.

[2] Capuzzo, C.; Firrao, G.; Mazzon, L.; Squartini, A.; and Girolami, V. (2005). „Candidatus Erwiniadacicola, a coevolved symbiotic bacterium of the olive fly Bactrocera oleae (Gmelin). International Journal of Systematic and Evolutionary Microbiology. 55: 1641–1647.

[3] Haiko J, Westerlund-Wikstrom B. The role of the bacterial flagellum in adhesion and virulence. Biology

2013;13:1242-67.

[4] Xu J, J. E.; Moore, P. G.; Murphy, B. C.; Millar, and Elborn, J. S. (2004). Early detection of Pseudomonas

aeruginosa comparison of conventional versus molecular (PCR) detection directly from adult patients with

cystic fibrosis (CF). Ann Clin Microbiol Antimicrob., 3(21).

[5] McIsaac SM, Stadnyk AW, Lin TJ. Toll-like receptors in the host defense against Pseudomonas aeruginosa

respiratory infection and cystic fibrosis. Journal of leukocyte biology 2012;92:977-85.

[6] Cheesbrough, M. (1991). Medical Laboratory Manual for Tropical Countries. 2nd ed., ELSB, Cambridge.,

11: PP. 508-511.

[7] Ramos, G. ; Rocha, J.; and Tuon, F. (2013). Seasonal humidity may influence Pseudomonas aeruginosa

hospital-acquired infection rates. International J. Infectious Disease. 17: 757-761.

[8] Drancourt, M.; Bollet, C.; Carlioz, A.; Martelin, R.; Gayral, J. P.; and Raoult, D. (2000). 16S ribosomal

DNA sequence analysis of a large collection of environmental and clinical unidentifiable bacterial isolates.

J. Clin. Microbiol., 38: 3623-3630.

[9] Faezi, S.; Bahrmand, A.R.; Mahdavi, M. ; Siadat, S. D.; Nikokar, I.; Sardari, S.; and Holder, I. N. (2016).

High Yield Overexpression, Refolding, Purification and Characterization of Pseudomonas aeruginosa

Type B-Flagellin: An Improved Method without Sonication. Int J Mol Cell Med, 5:1-12.

[10] Neha, S.; Shriya, D.; Sanjay, C.; and Kusum, H. (2014). Molecular detection of virulence genes as markers

in Pseudomonas aeruginosa isolated from urinary tract infections. Int J Mol Epidemiol Genet, 5(3): 125–

134.

[11] Jin, S.B.; Zhang, X.F.; Lu, J.G.; Fu, H.T.; Jia, Z.Y.; and Sun, X.W. (2015). Genetic analysis of QTL for eye

cross and eye diameter in common carp (Cyprinus carpio L.) using microsatellites and SNPs. Genet Mol

Res, 14:3557-3569.

[12] Chen, H.Y.; Huang, W.; Leung, V.H.; Fung, S.L.; Ma, S.L.; Jiang, H.; and Tang, N.L. (2013). Functional

Interaction between SNPs and Microsatellites in the Transcriptional Regulation of Insulin-Like Growth

Factor 1. Human mutation, 34(9):1289-1297.

[13] Skevaki, C.; Pararas, M.; Kostelidou, K.; Tsakris, A.; and Routsias, J.G. (2015). Single nucleotide

polymorphisms of Toll-like receptors and susceptibility to infectious diseases. Clinical and Experimental

Immunology, 180(2):165-177.

[14] Noreen, M., and Arshad, M. (2015). Association of TLR1, TLR2, TLR4, TLR6, and TIRAP

polymorphisms with disease susceptibility. Immunologic research, 62(2):234-252.

[15] Hill, A.V. (2001). The genomics and genetics of human infectious disease susceptibility. Annual review of

Genomics and Human Genetics, 2(1):373-400.

[16] Qing, L.; Lindsay, M. M.; Bruce, A.; Patricia, H.; Idan, M.; Tongzhang, Z.; Mark, P. P.; James, R.

C; Yawei, Z.; Andrew, Wendy, C.; Meredith, Y.; Theodore, R. H.; Claire, M. V.; Scott, D.; Brian,

L.; Anne, K.; Maryjean, S.; Shelia, H. Z.; Nilanjan, C.; Stephen, J. C.; Nathaniel, R.; and Sophia, S. W.

(2009). Genetic variation in caspase genes and risk of non-Hodgkin lymphoma: a pooled analysis of 3

population-based case-control studies. Blood, 114(2): 264–267.

[17] Sheu, JN.; Chen, MC.; Cheng, SL.; Lee, IC.; Chen, SM.; and Tsay, GJ. (2007). Urine interleukin-1beta in

children with acute pyelonephritis and renal scarring. Nephrology (Carlton), 12(5): 487-93.

[18] Kaplan, E.; Dinarello, CA.; and Gelfand, JA. (1989). Interleukin-1 and the response to injury. Immunol Res,

8(2):118-129.

[19] Gross, O., C. J. Thomas, G. Guarda, and J. Tschopp. 2011. The inflammasome: an integrated view.

Immunol. Rev., 243: 136–151.

[20] Vindenes, H.A.; Ulvestad, E.; and Bjerknes, R. (1998). Concentrations of cytokines in plasma patients

with large burns: their relation to time after injury, burn size, variables, infection, and

outcome. Eur J Surg, 164(9):647-656.

[21] Schnetzke, U.; Spies-Weisshart, B.; Yomade, O.; Fischer, M.; Rachow, T.; Schrenk, K.; Glaser, A.V.; von

Lilienfeld-Toal, M.; Hochhaus, A.; and Scholl, S. (2015). Polymorphisms of Toll-like receptors (TLR2 and

TLR4) are associated with the risk of infectious complications in acute myeloid leukemia. Genes and

immunity, 16(1): 83.

[22] Lena, F.; Ali, H.; Al-Marzoqi; Zahraa, M.; Al Taee; Ammar; and A. Shalan. (2016). Molecular and Phenotypic Study of Virulence Genes in a Pathogenic Strain of Pseudomonas aeruginosa Isolated from Various Clinical Origins by PCR: Profiles of Genes and Toxins. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 7(1):590-598.

[23] Allison, J. S.; Dawson, M.; Drake, D.; and Montie, T. C. (1985). Electrophoretic separation and molecular

Weight characterization of Pseudomonas aeruginosa H-antigen flagellins. Infect. Immun., 49:770–774.

[24] Vallet, I. ; Diggle, S.P. ; Stacey, R.E. ; Camara, M.; Ventre, I. ; Lory, S. ; Lazdunski, A. ; Williams, P. and

Filloux, A. (2004). Biofilm formation in Pseudomonas aeruginosa: fimbrial cup gene clusters are

controlled by the transcriptional regulator. J. Bacteriology, 186(9): 2880-2890.

[25] Bacalso, M. ; Xu, T. ; Yeung, K.; and Zheng, D. (2011). Biofilm formation of Pseudomonas aeruginosa

PA14 required lasI and was stimulated by the Pseudomonas quinolone signal, although salicylic acid

Inhibition is independent of the PQS pathway. JEMI, 15: 84-89.

[26] Kaur, D.C., and Wankhede, S.V. (2013). A study of biofilm formation and metallo beta-lactamases in

Pseudomonas aeruginosa in a tertiary care rural hospital. Intern. J. Sci. Res. Pub., 3(10): 1-10.

[27] Kodaka, H.; Iwata, M.; Yumoto, S.; and Kashitani, F. (2003). Evaluation of a new agar medium containing

cetrimide, kanamycin and nalidixic acid for isolation and enhancement of pigment production of

Pseudomonas aeruginosa in clinical samples. Journal of Basic Microbiology, 43(5):407-413.

[28] Bose, S.; Khodke, M.; Basak, S.; and Mallick, S.K. (2009). Detection of Biofilm-Producing Staphylococci:

Need of the Hour. J. Clin. Diag. Res., 3: 1915-1920.

[29] Ferraro, M. J.; Craig, W. A.; Dudley, M. N.; Eliopoulos, G. M.; Hecht, D. W.; Hindler, J.; (2000).

Performance standards for antimicrobial disk susceptibility tests. Approved Standard M2-A7. Wayne, PA:

National Committee for Clinical Lab. Standards. 7

[30] MacFaddin, J. F. (2000). Biochemical Tests for Identification of Medical Bacteria. 2nd ed., Waverly Press,

Inc., Baltimore, USA. PP. 64-67.

[31] Porteous, L. A.; Widmer, F.; and Seidles, R. T. (2002). Multiple enzyme restriction fragment length

polymorphism analysis for high resolution distinction Pseudomonas 16S rRNA genes. J. Microbiol. Meth.,

51:733-843

[32] Thornberry, N.A., Bull, H.G., Calaycay, J.R., Chapman, K.T., Howard, A.D., Kostura, M.J., et al. (1992) A

A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature

356: 768–774.

[33] Martinon, F., Mayor, A., and Tschopp, J. (2009) The inflammasomes: guardians of the body. Annu Rev

Immunol 27: 229–265.

[34] Martinon, F., and J. Tschopp. 2004. Inflammatory caspases: linking an intracellular innate immune system

to autoinflammatory diseases. Cell 117: 561–574

[35] Fantuzzi, G., and C. A. Dinarello. 1999. Interleukin-18 and interleukin-1 beta: two cytokine substrates for

ICE (caspase-1). J. Clin. Immunol. 19:1–11.).

[36] Miao, EA.; Andersen-Nissen, E.; Warren, SE.; and Aderem, A. (2007). TLR5 and Ipaf: dual sensors of

bacterial flagellin in the innate immune system. Semin Immunopathol, 29: 275-288.

[37] Todar, K. (2008). "Pseudomonas aeruginosa." Online Textbook for Bacteriology. 2008.

[38] Minion, S. A. (2010). Investigation into the introduction of clonal strains of Pseudomonas aeruginosa to the cystic fibrosis population by consumption of raw salad vegetables. Thesis, Queensland University of Technology, Brisbane, Australia.

Downloads

Published

31.07.2020

How to Cite

Hussein Alwan, A., Ibrahim Khadhim, N., & Zuhair Azeez, A. (2020). The Role of Caspases in Inflammatory Responses against Gram Negative Infections. International Journal of Psychosocial Rehabilitation, 24(5), 5149-5160. https://doi.org/10.61841/4dqtaj75