Development of the Algorithm for 3D Cephalometric Analysis of Planning Surgical Interventions for Congenital and Acquired Defects and Deformities of the Facial Skeleton
DOI:
https://doi.org/10.61841/404sjw05Keywords:
Cephalometric Analysis, Maxillofacial Surgery, MSCT, Deformities of the Facial Skeleton, Virtual Planning, Medical SoftwareAbstract
Planning surgery for congenital and posttraumatic injuries to the bones of the facial skeleton is an important task that often determines success in treatment. Since the structure of the facial skeleton is complex and soft tissues vary in thickness, it is very difficult to plan the outcome of surgical treatment. The authors have developed 3DCef software and a 3D-cephalometric analysis algorithm, which is based on this program. The authors carried out a cephalometric analysis of 40 MSCTs of the facial skeleton using the 3DCef program among patients of different ages and genders. The results of the study have revealed the minimum, maximum, and average values of cephalometric parameters. The authors have calculated the correlation values of the position of cephalometric points for the right and left sides of the face.
Downloads
References
[1] Yeolchiyan S.A. Surgical treatment of cranio-orbito-facial injury: thesis research of the Dr. of Medical
Sciences: 14.01.18. - М., 2017. – 308p.
[2] Gassner R., Tuli T., Hachl O., Rudisch A., Ulmer H. Cranio-maxillofacial trauma: a 10 year review of
9,543 cases with 21,067 injuries // Craniomaxillofac Surg. - 2003. - Vol. 31, №1 - P. 51-61.
[3] Vinay C, Reddy RS, Uloopi KS, Madhuri V, Sekhar RC. Craniofacial features in Goldenhar syndrome // J
Indian Soc Pedod Prev Dent. - 2009. - Vol. 27. - P. 121–124.
[4] Proffit, W.R., White RP Jr. Combined surgical-orthodontic treatment: How did it evolve and what are the
Best practices now? / W.R. Proffit, R.P. Jr. White // Am. J. Orthod. Dentofacial Orthop. – 2015. – May.147
[5] Yamaguchi K. et al. An integrated surgical protocol for adult patients with hemifacial microsomia: Methods
and outcome. // PloS one. 2017. № 8 (12). C. e0177223.
[6] Yaremchuk M.J. Atlas of facial implants. Sunders Elserver, 2007. - 234 p.
[7] Muraev А.А., Dymnikov А.B., Korotkova N.L., Kobets K.K., Ivanov S.Yu. Optimisation of the method for
planning plastic surgeries in the maxillofacial area // Modern technologies in medicine/Sovremennye
tehnologii v mediсine. - 2013. – No. 3. - P. 57-62.
[8] Oz U., Orhan K., Abe N. Comparison of linear and angular measurements using two-dimensional
conventional methods and three-dimensional cone beam CT images reconstructed from a volumetric
rendering program in vivo. Dentomaxillofac. Radiol. 2011;40:492–500.
[9] Liedke G.S., Delamare E.L., Vizzotto M.B., et al. Comparative study between conventional and cone beam
CT-synthesized half and total skull cephalograms. Dentomaxillofac. Radiol. 2012;41:136–142.
[10] Lin H.H., Chuang Y.F., Weng J.L., et al. Comparative validity and reproducibility study of various
landmark-oriented reference planes in 3-dimensional computed tomographic analysis for patients receiving
orthognathic surgery. PLoS One. 2015; 10:e0117604.
[11] van Vlijmen O.J., Maal T., Berge S.J., et al. A comparison between 2D and 3D cephalometry on CBCT
scans of human skulls. Int. J. Oral. Maxillofac. Surg. 2010;39:156–160.
[12] Farronato G., Garagiola U., Dominici A., et al. ―Ten-point‖ 3D cephalometric analysis using low-dosage
cone beam computed tomography. Prog Orthod. 2010;11:2–12.
[13] Kinoshita Y., Maeda H. Recent Developments of Functional Scaffolds for Craniomaxillofacial Bone Tissue
Engineering Applications // The Scientific World Journal. - 2013. - vol. 2013. - P. 1–21.
[14] Urken M.L., Bridger A.G., Zur K.B., Genden E.M. The scapular osteofasciocutaneous flap: a 12-year
experience // Archives of Otolaryngology. - 2001. - Vol. 127 № 7. - P. 862–869.
[15] Goh B.T., Lee S., Tideman H., Stoelinga P.J.W. Mandibular reconstruction in adults: a review //
International Journal of Oral and Maxillofacial Surgery. - 2008. - Vol. 37, №7. - P. 597–605.
[16] van Noort R. The future of dental devices is digital // Dental mater. - 2012. - №28. - P. 312.
[17] Chrzan R, Urbanik A, Karbowski K, Moskala M, Polak J, Pyrich M. Cranioplasty prosthesis manufacturing
based on reverse engineering technology // Med Sci Monit. - 2012. - Vol. 18 №1. - Р. 1-6.
[18] Inokoshi M., Kanazawa M., Minakuchi S. Evaluation of a complete denture trial method applying rapid
prototyping // Dental Materials Journal. - 2012. - Vol. 31, №1. - P. 40–46.
[19] Han S.W., Wang Z.Y., Hu Q.G., Han W. Combined use of an anterolateral thigh flap and rapid prototype
modeling to reconstruct maxillary oncologic resections and midface defects // J Cranio-Maxillofac Surg. -
2014. - Vol. 25 №4. - P. 1147–1149.
[20] Arnett G.W. Facial and dental planning for orthodontists and oral surgeons. – Mosby. - 2004. - P.151-164.
[21] Albarakati S.F., Kula K.S., Ghoneima A.A. The reliability and reproducibility of cephalometric
Measurements: A comparison of conventional and digital methods. // Dento-Maxillo-Facial Radiology. 2012.
№ 1 (41). P. 11–7.
[22] Joda T., Gallucci G.O. The virtual patient in dental medicine // Clinical Oral Implants Research. 2015. № 6
(26). P. 725–726.
[23] Tucker S. et al. Comparison of actual surgical outcomes and 3-dimensional surgical simulations. // Journal
of oral and maxillofacial surgery: official journal of the American Association of Oral and Maxillofacial
Surgeons. 2010. № 10 (68), pp. 2412–21.
[24] Upadhyay J.S. Soft tissue cephalometric analysis applied to regional Indian population / J.S. Upadhyay, S.
Maheshwari, S.K. Verma, S.N. Zahid // Natl. J. Maxillofac Surg. – 2013. – Jul. Jul.4(2):159-66. doi:
10.4103/0975-5950.127644.
[25] Wilde F., Hanken H., Probst F., Schramm A., Heiland M., Cornelius C.P. Multicenter study on the use of
patient-specific CAD/CAM reconstruction plates for mandibular reconstruction. // Int J Comput Assist
Radiol. Surg.—2015.—Vol. 10, № 12.—P. 2035–2051.
[26] Mazzoni S., Bianchi A., Schiariti G., Badiali G., Marchetti C. Computer-aided design and computer-aided
manufacturing cutting guides and customized titanium plates are useful in upper maxilla waferless
repositioning // Oral Maxillofac Surg. - 2015. - Vol. 73 №4. - P. 701–707.
[27] Katase H., Kanazawa M., Inokoshi M., Minakuchi S. Face simulation system for complete dentures by
applying rapid prototyping // The Journal of Prosthetic Dentistry. - 2013. - Vol. 109, №6. – P. 353–360.
[28] Rana M., Chui C.H.K., Wagner M., Zimmerer R., Rana M., Gellrich N.C. Increasing the accuracy of orbital
reconstruction with selective laser-melted patient-specific implants combined with intraoperative
navigation // Oral Maxillofac Surg. - 2015. - Vol. 73 №6. - P. 1113–1118.
[29] Baumann A., Sinko K., Dorner G. J. Late reconstruction of the orbit with patient-specific implants using
computer-aided planning and navigation // Oral Maxillofac Surg. - 2015. - Vol. 73, №12. - P. 101–106.
[30] Chae M. P., Rozen W. M., McMenamin P. G., Findlay M. W., Spychal R. T., Hunter-Smith D. J. Emerging
Applications of Bedside 3D Printing in Plastic Surgery // Frontiers in Surgery. - Jun. 2015. - Vol. 2.
[31] Fedorov A., Beichel R., Kalpathy-Cramer J., Finet J., Fillion-Robin J.C., Pujol S., et al. 3D slicer as an
image computing platform for the quantitative imaging network // Magn Reson Imaging. - 2012. - №30. - P.
1323–1341.
[32] Golby A.J., Kindlmann G., Norton I., Yarmarkovich A., Pieper S., Kikinis R. Interactive diffusion tensor
tractography visualization for neurosurgical planning // Neurosurgery. - 2011. - Vol. 68, №2. - P. 496–505.
[33] Chae M.P., Hunter-Smith D.J., Spychal R.T., Rozen W.M. 3D volumetric analysis for planning breast
reconstructive surgery. // Breast Cancer Res Treat. - 2014. - Vol. 146 №2. - P. 457–460.
[34] Chae M.P., Lin F., Spychal R.T., Hunter-Smith D.J., Rozen W.M. 3D-printed haptic ―reverse‖ models for
preoperative planning in soft tissue reconstruction: a case report // Microsurgery. - 2014. - №Vol.35 №2. -
P.148-153.
[35] Essig H., Rana М., Kokemueller H., von See C., Ruecker M., Tavassol F., Gellrich N.-C. Pre-operative planning for mandibular reconstruction — a full digital planning workflow resulting in a patient-specific reconstruction // Head & Neck Oncology. - 2011. - №3. - P. 45.
Downloads
Published
Issue
Section
License
Copyright (c) 2020 AUTHOR

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.