Reviewing ensemble methods in Particle Swarm Optimization (PSO)

Authors

  • Pranjali Dewangan Scholar, Dr.C.V.Raman University,Bilaspur, Chhattisgarh Author
  • Dr. Neelam Sahu Associate Professor,Dr.C.V.Raman University,Bilaspur, Chhattisgarh Author

DOI:

https://doi.org/10.61841/rs26fs32

Keywords:

Particle Swarm Optimization (PSO), algorithm

Abstract

The Particle Swarm Optimization algorithm (Particle Swarm Optimization or PSO) [Kennedy and Eberhart, 1995] is a bioinspired algorithm that is based on an analogy with the social behavior of certain species. Two basic influences of inspiration are recognized in PSO:

The movement of flocks of birds, in which each individual dis-squares using simple rules for adjusting its speed depending on the observations he makes about the close individuals in the flock.

A social model in which each particle represents a belief and influences between individuals the approach of individuals to others by diffusion of said beliefs. 

Downloads

Download data is not yet available.

References

1. Aha, D. W. (1992). Tolerating noisy, irrelevant, and novel attributes in instance-based learning algorithms. Int. J. Man-Mach. Stud., 36(2):267–287.

2. Aha, D. W., Kibler, D., and Albert, M. K. (1991).

3. Instance-based learning algorithms. Mach. Learn., 6(1):37–66.

4. Alcala-Fernandez, J., Garcia, S., Berlanga,

F., Fernández, A., Sanchez, L., del Jesus, M., and Herrera, F. (2008). Keel: A data mining software tool

integrating genetic fuzzy systems. Genetic

andEvolvingSystems, 2008. GEFS2008. 3rd International Workshop on, pages 83–88.

5. Blachnik, M. and Duch, W. (2008). Prototype

SVM, volume 80/2008 of Studies in Computational , pages 163–

182. Springer Berlin/Heidelberg.

6. Blackwell, T. (2007). ParticleSwarmOptimizationinDy- Environments, pages 29–

49. Studies in Computational Intelligence. Springer Berlin/Heidelberg.

7. Cano, J., Herrera, F., and Lozano, M. (2003). Using evolutionary algorithms as instance

Selection for data reduction in KDD: an experimental study.

IEEE Transactions on Evolutionary Computation, 7(6):561–575.

8. Prism: An algorithm for inducing modular rules. International Journal of Man-Machine Studies,

27(4):349–370.

9. Cervantes, A., Isasi, P., and Galv´an, I. (2005a). Binary Particle Swarm Optimization in classification. Neural Network World, World,15(3):229–241.

10. Duch, W. and Grudzinski, K. (2001). Prototype-based rules-a new way to understand the data. In Proceedings of International Joint Conference on Neural Networks, 2001 (IJCNN’01), volume 3, pages 1858–1863, vol. 3.

11. Eberhart, R. and Shi, Y. (2000). Comparing inertia weights and constriction factors in particle swarm optimization. In Proceedings of 2000 Congress on Proceedingsof2000CongressonEvolutionaryComputation,2000.,volu- Computation, 2000, volume 1, pages 84–

88vol.1.

12. Holden, N. P. and Freitas, A. A. (2007). A hybrid

pso/ classification. In GECCO’07: Proceedings of 2007

GECCO , pages 2745–

2750, New York, NY, USA. ACM.

13. [Holland, 1976] Holland, J. (1976). Adaptation. Progress in theoretical biology, IV: 263–293.

14. Jin, Y. (2006). Multi-Objective Machine Learning, volume

16/2006 of Studies in Computational Intelligence. Springer Berlin/Heidelberg.

15. Jin, Y. (2007). Pareto-based multi-objective machine learning.

In 7th International Conference on Hybrid Intelligent Systems, 2007. HIS 2007, pages 2–2.

16. Nickabadi, A., Ebadzadeh, M., and Safabakhsh, R. (2008). Dnpso: A dynamic niching particle

swarm optimizer for multi-modal optimization.Evolutionary

Computation, 2008 (CEC2008) (IEEE World Congress on Computational Intelligence), pages 26–32.

17. Omran, M. G., Salman, A. A., and Engelbrecht, A. P. (2006). Dynamic clustering using particle

Swarm optimization with application in image segmentation. Pattern Anal. Appl., 8(4):332–344.

18. O’Neill, M. and Brabazon, A. (2008). Self-organizing swarm (SOSwarm).Soft Comput., 12(11):1073–1080.

19. [Poli and Broomhead, 2007] Poli, R. and Broomhead, D. (2007). Exact analysis of the sampling

distribution for the canonical particle swarm optimizer and its convergence during stagnation. In

GECCO ’07: Conference Evolutionary , pages 134–

141, New York, NY, USA. ACM.

20. Powell, M.J.D. (1987). Radialbasisfunctionsformultiva- interpolation: a review, pages 143–

167. Clarendon Press Institute of Mathematics and its Applications. Clarendon Press, New York,

NY, USA.

21. Sousa, T., Silva, A., and Neves, A. (2004). Particle swarm-based data mining algorithms for

classification tasks. Parallel Comput., 30(5-6):767–783.

22. Suganthan, P.N. (1999).Particle

neighborhood operator. InProceedingsofIEEECongressonEvolutio- of IEEE Congress on Evolutionary Computation (CEC), pages 1958–

1962.

23. Zhang, L., Zhou, C., Liu, X., Ma, Z., Ma, M., and Liang,

24. Y. (2003). Solving multi objective optimization problems using particle

optimization. In Proceedings of IEEE Congress on Evolutionary

Computation2003 (CEC2003), pages 2400–2405.

25. Zhang, Q., Li, X., and Tran, Q. (2005). A modified particle swarm particleswarmoptimizationalgorithm.In Proceedings of 2005 International

Conference on Machine Learning and Cybernetics, 2005, volume 5, pages 2993–2995, Vol. 5.

26. Zhen, L., Wang, L., Wang, X., and Huang, Z. (2008). A novel pso-inspired probability-based binary

optimization algorithm. In Proceedings of ProceedingsofInternationalSymposiumonInformationScienceandEngieering,2008.ISISE’08.,volume2,pages248–251.

Downloads

Published

31.05.2020

How to Cite

Dewangan, P., & Sahu, N. (2020). Reviewing ensemble methods in Particle Swarm Optimization (PSO). International Journal of Psychosocial Rehabilitation, 24(3), 6985-6995. https://doi.org/10.61841/rs26fs32