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Abstract
In this paper, we prove a common fixed point theorem of Gregus type for compatible mappings in Banach space. .Our
work generalizes several earlier results on fixed points in this direction.
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1 INTRODUCTION AND PRELIMINARIES:

The following definitions and results will be used in this paper.
In [8], Jungck defined the concept of compatibility of two mappings, which includes weakly commuting mappings (Sessa
[15] )as proper sub class.

1.1 Definition:
Let X be a normed linear space and let S,T : X — X be two mappings S and T are said to be compatible if, whenever

{xn} is a sequence in X such that Sx_,TX, — X € X, then
|ISTx, —=TSx,| > 0asn—w

In (1998), Jungck and Rhoades[10] introduced the notion of weakly compatible maps and showed that compatible maps
are weakly compatible but converse need not be true.

1.2 Definition:
A pair of Sand T is called weakly compatible pair if they commute at coincidence points.

1.3 Example:

Consider X = [0,2] with the usual metric d. Define mappings S,T : X — X by

Sx=0ifx=0,Sx= 0.15if x>0

Tx=0ifx=0,Tx=03if0<x < 0.5 Tx=x-0.35if x> 0.5

Since S and T commute at coincidence point 0 € X, so S and T are weakly compatible maps to see that S and T are not

compatible, let us consider a decreasing sequence {x} where x = 0.5+(1],n =12,... Then Sx, — 0.15,Tx, — 0.15
n
but STX, — 0.15,TSX, — 0.3 as N — oo. Thus weakly compatible compatible maps need not be compatible.

2. MAIN RESULTS:

We prove a common fixed point theorem of Gregus type for compatible mappings in Banach space. Our Theorem is
improvement of results of Gregus[6], Jungck [9], Sharma and Deshpande [17].

Throughout this section, we assume that X is Banach space and C is non empty closed convex subset of X.

Now, we prove our main theorem.

2.1 Theorem :
Let S and T be compatible mappings of C into itself satisfying the following condition:

[Tx—Ty| < a|Sx—Sy| +b maxﬂ|Tx - SX|.[Ty - Sy||}
+ ¢ max{|sx - Sy], [Tx — Sx|, [Ty - sy}
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1
+d max{“Sx — Sy|,[Tx — Sx||, [Ty — Sy, E(“Ty — SX]| +[Tx - Sy||)} (1)

for all x, y in C where a,b,c,d>0, a+b+c+d=1 and a+c+d< \Ja if s is linear and continuous in C and T(C)<S(C).
Then T and S have a unique common fixed point z in C and T is continuous at z.

Proof : Consider x = xo be an arbitarary point in C and choose points xi, X2 and X3 in C such that
SX1=TX, SX2=TX1, SXa=T X2
This can be done since T(C) < S(C). forr=1,2,3,... (1) leads to

”TXr = SX, " - ||TX, _TXH"
< aSx, —Sx,,|+b maxﬂ[Txr = SX, |} [Tx, 4 — SxH||}

+C maxﬂ|Sxr = SXe_o|s [ T%, = SX [, [T, — SxH||}
1
+d max{“Sxr = SX,_g||s [T, = %, [T,y = S, 5 (||Txr7l — S, [ +]Tx, - er71||)}
which shows that,since
HSXr - er—lH = HTXr—l - er—lH’

we have, forr=1,2,3,...
T, = SX || <%,y =SX. 4 ()

From (1) and (2) we have
[Tx; = x| =Tx, ~Tx]
<a|Sx, —Sx|+b maxﬂ|Tx2 — SX, |, [Tx - Sx||}
+C maxﬂ|5x2 —SX||[ITx, = Sx, | [Tx - Sx||}

1
+d max{”Sx2 — x|, [Tx, = Sx, | [Tx — SX], E(”TX — SX, ||+ [Tx, — Sx||)}

< alTx, — Sx| + b max{[Tx — Sx|, [Tx - Sx|}
+C maxﬂ|Txl — SX|,[[Tx — Sx], [ Tx - Sx||}

+d maxﬂ['l’x1 — SX|[Tx — Sx|,[Tx — Sx], %(“Tx =TXy || +|Tx, — Sx||)}
< 2a|[Tx — x| + b|[Tx — Sx||+ 2¢[[Tx — S|+ d maxﬂ[‘l’xl — SX||[[Tx — Sx]|, [Tx — Sx],
1
E(JFX = 9+ [T, = S| +[[Tx, = %, |+ 5%, — X))
< 2a|[Tx — SX| +b|Tx — S|+ 2¢|[Tx — Sx| + d maxﬂ|Tx1 — Sx]|, [Tx — Sx||[Tx — Sx],
1
5 (= 8]+ [Tx = $x] + [T, — S}

< 2a|[Tx — SX| + b|[Tx — SX||+ 2c|[Tx — Sx| + 2d|[Tx — Sx|
<{(a+2c+2d) +bjfTx-Sx| .3

1 1
= E X2 + E X3.
Since C is convex, Z € C and S being linear

1 1
Sz = (EJSXZ + [EJSXS
1 1
= (EJTX]_ + (E}TXZ ()
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ISz - sx,| = H(%)‘Fxl + [%}sz — Sx,

(s (o

< @ x—S +@ {2+ 2c-+2d) + b Tx— SX|

s(%) {l+(2a+2c+2d) +b}fTx— S| ...(5)

ISz - Sx, | = H( )Txl (;)sz — SX,

s@ m=sx. .

By (2) and (4), we have

By (1) and (6) we have

( mz- Tx1||+( j||Tz |

a||Sz—Sx1||+(Ejbmax {2 — Sal, T, — Sx,

IA

= NI NP N

=

C max ﬂ|Sz —Sx,||, [Tz = S2|} [Tx, - Sx1||}

d max ﬂ|Sz — Sxy||, [Tz — Sz}, [Tx, — Sx,|

I, — 2]+ [Tz = S+ [1ja||sZ Sx2||+( jbmax{“‘l’z—Sz||,||Tx2—Sx2||}

C max ﬂ|Sz SX,|. [Tz - Sz, [Tx, - Sx2||}

/—ﬂ\

h
NI DR N o

d max ﬂ|Sz SX, [Tz — Sz, [Tx, — Sx,|,

Tx, = 2] + [Tz - Sx,| )}

}a[1+ 2a+2c+2d +b]|Tx — Sx| + ( jb max ﬂrrz —Sz||[Tx - Sx||}

IA =

—+

7N /7 N\
NP NP

jc max {E (1+2a+2c+b+2d)[Tx - SX|,[Tz — Sz}, [Tx - Sx||}

+(%)d maxE (L+ 2a-+ 2¢ + b+ 2d)[Tx — Sx], [Tz - S2], [Tx - Sx],
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%{(2 +2a+2¢+2d +b)[Tx — S|+ [Tz - Sz||}} - Gj a|Tx — S|
; @b max Tz - 52 [Tx - Sx}+ @ cmax {% 1T - )72 - Sz [Tx - Sx||} < -5X] .0

[ 2omax{L me-spre-sabm-sib Som-sufeire-sil)

where

l:(%ja[2+2a+20+2d +b]+b+%c[l+2a+20+b+2d]

+%c+%d[2+2a+20+b+2d]+d

<%a(3+\/5)+%c(2+\/5)+b+%c+%(3+\/5)+d

<E+3—a+b+c+d
4 4

=a+b+c+d=1

So we have 0< A <1.
Sincex is an arbitary point in C, from (7), it follows that there exists a sequence {z,} in C such that

[Tzy = Sz, < A[TXe = SXo .

[Tz, = Sz,| < A|[Tzy — Sz,

[Tz, —Sz,| < ATz, — Sz,
which yield that

[Tz, =Sz, < A" [Ty — SX|,
and so we have

lim,,, [Tz, —Sz,[=0...8)

Setting K, = {x e C:|Tx—Sx|< %}

forn=1,2, ... then (8) shows that
K,#¢ forn=12,...

and K, o K, oK, o...

obviously, we have TK | # ¢ and

TKn DTKn+1 forn=1,2,...
for any x, y in K, by (1), we have
[Tx-Ty| < a|sx—Sy|+n""b+c max{“Sx - Sy n‘l}
+d mamex - Sy|.n7, %(n‘1 +[Sx—Sy|+n7 +[Sx— Sy||)}
<a|Sx—Sy|+n~'b+c max{“Sx - Sy n‘l}
+d max{jsx—Sy|,n*, (n* +[sx— Sy}
<a@n?+|Tx-Ty])+n'b+c@n™ +|[Tx=Ty|) +d@n* +[Tx - Ty])
=[a+c]2n™ +[a+c+d][Tx-Ty|+n"'b+3n""d
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Therefore,
[Tx-Ty|<n*{2[a+c]+b+3djl-a-c-d)™
Thus we have
lim, , diam(TK, )=lim,_, diam(TK )=0
By Cantor's theorem, there exists a point u in C such that

o0

NK, )=

n=1
Since U € C foreachn= 1,2,... there exists a point Y, in TK, such that
-1
ly, —uf<n
Then there exists a point x, is K, such that
lu=Tx,[ <n™

andso TX, —U as n—oo.
Since X, € Kk, we have also

X, —Sx,[|<n
andso SX, > U as N —oo.
Since S is continuous STx, — Su and SSx, — Su as N —oo.

Moreover”TSXn - STx, || —>0asn—-ow.

Since S and T are compatible and TX, — SX, —>u as n— oo , we have TSx, — Su.

By (1), we have
[Tu —Su|| <|[Tu —TSx,| +|[TSx, — Sul

< a|Su — SSx, |+ b max{Tu — Sul,[TSx, — SSx,
+cmax{|Su — SSx, |, [Tu - Sul,[TSx, — S, [
+d max{“Su — 85X, [, [Tu — Sul, [TSx,, — SSx, |

—\[TSx_ — Sull+(Tu —SSx_| )i+ |TSx, —Su
(s, -l +Tu - 55, +[Tsx, - sul

Letting N — o0, we obtain
[Tu - Su| < &Su — Sul| + b max{[Tu - Sul,|Su - Sul}

+ e max{|Su — Sul| [Tu - Sul, |Su - Sul}
+d max{|Su — Sul|,[Tu - Sul,[Su - S,

1
- (Isu=sul+[[Tu— sul)j+su—su|

=(b+c+d)[Tu—Sul

=(1—-a) [Tu—Sul
So we have Tu = Su.
Thus TSU = STu and TTu =TSu = STu since S and T are compatible. Furthermore, we have

[TTu —Tu| < a|STu - Su||+ bmax{[TTu - STul,[Tu - Sul}
+cmax{|STu — Sul,[TTu — STul,[Tu — Sul}
+d max{|STu — Sul, [TTu - STul}[Tu - Su|

(o= sTul+{7Tu - sul)}

=(a+c+d)|TTu—Tul
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This leads to ||TTU —TU” =0since (a+c+d)<+/a.

Let z=Tu=Su.

ThenTz=zand Sz=STz=TSz =Tz =z.

Thus z is a unique common fixed point of T and S. The uniqueness of z is a consequence of inequality (1). Now, we show
that T is continuous at z. Let {yn} be a sequence in C such that y, — z.

Since S is continuous, Sy, — Sz, By (1), we have
[Ty, —Tz| <a|Sy, — Sz||+b maxﬂ|Tyn =Sy, ||z - Sz||}
+c max{“Syn —Sz|, [Ty, — Sy, | [Tz - Sz||}

1
+d max{[sy, - Sz|, [Ty, - Sy,|[Tz - 7], E(ITFZ =Sy, | + [Ty, - s2])}
<a|Sy, - Sz +b maxﬂ|Tyn —Tz|+|Tz - Syn||}
+c maxﬂ|8yn —Sz|,[[Ty, —Tz|+|Tz - Syn||}
+d maxﬂ|Syn —Sz|,[Ty, =Tz|+[Tz - Sy,|,[Tz - SZ,

(2 =sy, |+, - s2])
<a|Sy, —Sz| + bﬂ|Tyn —Tz|+|Sz- Sy, ||}+ cﬂ|Tyn —Tz|+|Sz- Sy, ||}
+d ﬂ[‘l’yn —Tz||+[Sz - Sy,|,
[Ty, =Tz <(a+b+c+d)|Sy, —Sz|+ (b+c+d)|Ty, — T
<(a+b+c+d)-b-c—d)™|Sy, -S|

Therefore, we have Ty, — Tz and so T is continuous at z.

This completes the proof.
As a consequences of our Theorem 2.1, we have the following results.

2.2Corallary:
Let S and T be compatible mappings of C into itself satisfying the following condition:

[Tx =Ty < &}Sx - Sy| + b max{[Tx — x|, [Ty - Sy
+C maxﬂ|Sx — Sy|,[[Tx — x| [Ty — SY||}

for all x, y in C where a,b,c>0, a+b+c=1 and a+c<+/a if S is linear and continuous in C and T(C) = S(C).Then T

and S have a unique common fixed point z in C and T is continuous at z.
Corallary 2.2 shows the result of Sharma and Deshpande [16], which obtain by putting d =0 .
Now if b=0, c=0 then we get the following corallary

2.3Corallary:
Let Sand T be compatible mappings of C into itself satisfying the following condition:

[Tx—Ty| < a|Sx—Sy|+ (1-a) maxﬂ\Tx — S|, [Ty - SyH}
forall x, y in C, 0 <a <1, if S is linear and continuous in C and T (C) S (C), Then T and S have a uniqgue common

fixed pointz in C and T is continuous at z.

2.4 Remark:
Corallary (2.3) also proves continuity of T, so it improves the result of Jungck[9].
if we put a = b = ¢ = 0 then we get the following result

2.5 Corallary:
Let S and T be compatible mappings of C into itself satisfying the following condition:

1
rx Ty < d maxfsx— Sy} x4 1y~ syl 5 1y - 4]+ [rx )}
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forall x,yin Cwhere 0< d <1, if S i linear and continuous in C and T (C) cS (C) Then T and S have a unique

common fixed pointz in C and T is continuous at z.
To demonstrate the validity of our Theorem 2.1, we have the following example

2.6 Example:
Let X =R and C=[01] with the usual norm. Consider the mappings T and S on C defined asTx:%x and Sx:%x forall xeC

1 1
Then T(C) :[o, 4} cS(C) = [o, 2]

Itis easy to see that S is linear and continuous.
Further, T and S are compatible if lim =0, where {x.} is a sequence in C such that lim_, Tx,=Ilim_,_ Sx,=0 for

n—o0 Xﬂ

some 0eC.

If we take @ =1/9,b=13/18,c =3/18,d =0 we see that the condition (1) of our Theorem 3.1, is satisfied also we

have a +b+c=1and a+C < \/5 .
Thus all the conditions of Theorem 3.1 are satisfied and 0 is the unique common fixed point of Sand T.
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