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Abstract 

In this paper, we prove a common fixed point theorem of Gregus type for compatible mappings in Banach space. .Our 

work generalizes several earlier results on fixed points in this direction. 
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1 INTRODUCTION AND PRELIMINARIES: 

  

The following definitions and results will be used in this paper. 

In [8], Jungck defined the concept of compatibility of two mappings, which includes weakly commuting mappings (Sessa 

[15] )as proper sub class. 

 

1.1 Definition: 

Let X be a normed linear space and let XXTS →:,  be two mappings S and T are said to be compatible if, whenever 

{xn} is a sequence in X such that ,, XxTxSx nn → then 

→→− nasTSxSTx nn 0  

 

In (1998), Jungck and Rhoades[10] introduced the notion of weakly compatible maps and showed that compatible maps 

are weakly compatible but converse need not be true. 

 

1.2 Definition: 

A pair of S and T is called weakly compatible pair if they commute at coincidence points. 

 

1.3 Example: 

Consider X = [0,2] with the usual metric d. Define mappings XXTS →:,  by 

Sx = 0 if x = 0, Sx =  0.15 if x> 0 

Tx = 0 if x = 0, Tx = 0.3 if 0 <x   0.5, Tx = x - 0.35 if x> 0.5 

Since S and T commute at coincidence point ,0 X  so S and T are weakly compatible maps to see that S and T are not 

compatible, let us consider a decreasing sequence {xn} where ,...2,1,
1

5.0 =







+= n

n
xn

 Then 15.0,15.0 →→ nn TxSx

but 3.0,15.0 →→ nn TSxSTx  as →n . Thus weakly compatible compatible maps need not be compatible. 

 

2. MAIN RESULTS: 

 

We prove a common fixed point theorem of Gregus type for compatible mappings in Banach space. Our Theorem is 

improvement of results of Gregus[6], Jungck [9], Sharma and Deshpande [17]. 

Throughout this section, we assume that X is Banach space and C is non empty closed convex subset of X. 

Now, we prove our main theorem. 

 

2.1 Theorem :  

Let S and T be compatible mappings of C into itself satisfying the following condition: 

 
 SyTySxTxSySxc

SyTySxTxbSySxaTyTx

−−−+

−−+−−

,,max

,max
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 ( )SyTxSxTySyTySxTxSySxd −+−−−−+
2

1
,,,max        ....(1) 

for all x, y in C where a,b,c,d>0, a+b+c+d=1 and a+c+d< a  if S is linear and continuous in C and ).()( CSCT 

Then T and S have a unique common fixed point z in C and T is continuous at z. 

 

Proof : Consider x = x0 be an arbitarary point in C and choose points x1, x2 and x3 in C such that 

Sx1 = Tx,  Sx2 = Tx1,  Sx3= T x2     

This can be done since ).()( CSCT   for r = 1,2,3,...    (1) leads to 

 
 

 ( )11111

111

111

1

2

1
,,,max

,,max

,max

−−−−−

−−−

−−−

−

−+−−−−+

−−−+

−−+−

−=−

rrrrrrrrrr

rrrrrr

rrrrrr

rrrr

SxTxSxTxSxTxSxTxSxSxd

SxTxSxTxSxSxc

SxTxSxTxbSxSxa

TxTxSxTx

 
which shows that,since 

,111 −−− −=− rrrr SxTxSxSx  

we have, for r = 1,2,3,... 

11 −− −− rrrr SxTxSxTx .       ....(2) 

From (1) and (2) we have 

 
 

 ( )SxTxSxTxSxTxSxTxSxSxd

SxTxSxTxSxSxc

SxTxSxTxbSxSxa

TxTxSxTx

−+−−−−+

−−−+

−−+−

−=−

22222

222

222

212

2

1
,,,max

,,max
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 
 SxTxSxTxSxTxc

SxTxSxTxbSxTxa

−−−+

−−+−

,,max

,max

1

1
 

 ( )SxTxTxTxSxTxSxTxSxTxd −+−−−−+ 211
2

1
,,,max  



( )SxSxSxTxSxTxSxTx

SxTxSxTxSxTxdSxTxcSxTxbSxTxa

−+−+−+−

−−−+−+−+−

222111

1

2

1
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

( )SxTxSxTxSxTx

SxTxSxTxSxTxdSxTxcSxTxbSxTxa

−+−+−

−−−+−+−+−

1

1

2

1

,,,max22

SxTxdSxTxcSxTxbSxTxa −+−+−+− 222  

  SxTxbdca −+++ )222(         ....(3) 

We shall now define a point 

32
2

1

2

1
xxz 







+








= . 

Since C is convex, Cz  and S being linear 

32
2

1

2

1
SxSxSz 







+








=  

21
2

1

2

1
TxTx 







+








=             ....(4) 

It follows from (2), (3) and (4) that 
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  SxTxbdca −++++







 )222(1
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By (2) and (4), we have 
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SxTx −









2

1
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By (1) and (6) we have 
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So we have 0< <1. 

Sincex is an arbitary point in C, from (7), it follows that there exists a sequence {zn} in C such that 

,
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which yield that 

,00

1 SxTxSzTz n

nn −− +  

and so we have 

0lim =−→ nnn SzTz ….(8) 

Setting 








−=
n

SxTxCxK n

1
:  

for n = 1,2, … then (8) shows that 

 nK  for n = 1,2,… 

and ...321  KKK  

obviously, we have nTK  and 

1+ nn TKTK  for n = 1,2,… 

for any x, y in Kn by (1), we have 
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Therefore, 

  11 )1(3][2 −− −−−+++− dcadbcanTyTx  

Thus we have 

( ) ( ) 0limlim == →→ nnnn TKdiamTKdiam  

By Cantor's theorem, there exists a point u in C such that 

( ) }{
1

uTK n

n

=


=

 . 

Since Cu  for each n = 1,2,… there exists a point yn in TKn such that 
1−− nuyn  

Then there exists a point xn is Kn such that 
1−− nTxu n  

and so →→ nasuTxn
. 

Since ,nn kx   we have also 

 

and so →→ nasuSx
n

. 

Since S is continuous →→→ nasSuSSxandSuSTx nn
. 

Moreover →→− nasSTxTSx nn 0 . 

Since S and T are compatible and →→→ nasuSxTx nn
, we have SuTSxn → . 

By (1), we have 
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
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Letting →n , we obtain 
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So we have Tu = Su. 

Thus STuTSu = and STuTSuTTu ==  since S and T are compatible. Furthermore, we have 
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1−− nSxTx nn
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This leads to TuTTu − = 0 since adca ++ )( .  

Let SuTuz == . 

Then Tz = z and Sz = STz = TSz = Tz =z. 

Thus z is a unique common fixed point of T and S. The uniqueness of z is a consequence of inequality (1). Now, we show 

that T is continuous at z. Let {yn} be a sequence in C such that zyn → . 

Since S is continuous, SzSyn → , By (1), we have 
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Therefore, we have TzTyn → and so T is continuous at z.  

This completes the proof. 

As a consequences of our Theorem 2.1, we have the following results. 

 

2.2Corallary: 

Let S and T be compatible mappings of C into itself satisfying the following condition: 

 
 SyTySxTxSySxc

SyTySxTxbSySxaTyTx

−−−+

−−+−−

,,max

,max
 

for all x, y in C where a,b,c>0, a+b+c=1 and a+c< a  if S is linear and continuous in C and ).()( CSCT  Then T 

and S have a unique common fixed point z in C and T is continuous at z. 

Corallary 2.2 shows the result of Sharma and Deshpande [16], which obtain by putting d = 0 . 

Now if b=0, c=0 then we get the following corallary 

 

2.3Corallary: 

Let S and T be compatible mappings of C into itself satisfying the following condition: 

 SyTySxTxaSySxaTyTx −−−+−− ,max)1(  

for all x, y in C, 0 <a <1, if S is linear and continuous in C and ),()( CSCT  Then T and S have a unique common 

fixed pointz in C and T is continuous at z. 

 

2.4 Remark: 

Corallary (2.3) also proves continuity of T, so it improves the result of Jungck[9]. 

if we put a = b = c = 0 then we get the following result 

 

2.5 Corallary: 

Let S and T be compatible mappings of C into itself satisfying the following condition: 

 ( )SyTxSxTySyTySxTxSySxdTyTx −+−−−−−
2

1
,,,max  
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for all x, y in C where 0 1 d , if S is linear and continuous in C and ).()( CSCT  Then T and S have a unique 

common fixed pointz in C and T is continuous at z. 

To demonstrate the validity of our Theorem 2.1, we have the following example 

 

2.6 Example: 

Let ]1,0[== CandRX  with the usual norm. Consider the mappings T and S on C defined as CxallforxSxandxTx ==
2

1

4

1
 

Then 








=








=

2

1
,0)(

4

1
,0)( CSCT . 

It is easy to see that S is linear and continuous. 

Further, T and S are compatible if }{,0lim nnn xwherex =→
 is a sequence in C such that 0limlim == →→ nnnn SxTx  for 

some C0 . 

 

If we take 0,18/3,18/13,9/1 ==== dcba  we see that the condition (1) of our Theorem 3.1, is satisfied also we 

have a +b+c=1 and aca + . 

Thus all the conditions of Theorem 3.1 are satisfied and 0 is the unique common fixed point of S and T. 
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