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Abstract: In modern telecommunication networks, it is an important requirement to measure the 
quality of speech objectively and continuously at different nodes of the network. Reference-free 
(non-intrusive) speech quality estimation algorithms measure the quality of speech signals without 
using the original clean speech signal as a reference. In this work, reference-free speech quality 
assessment is done for telephony band speech signal using multi-instance features which are 
probabilistically modelled using Gaussian Mixture Model (GMM). The use of single-instance 
features, as in existing algorithms, is not accurate in capturing the time localized information of 
short-time transient distortions and their distinction from plosive sounds of a speech signal. Hence, 
the importance of estimating features at multi-instances that are relevant for objective speech 
quality measurements. The silence segments are removed from the speech signal and only active 
speech segments are considered for features computation using frame by Lyon’s auditory model. 
The features thus computed are combined by taking mean, variance, skewness and kurtosis over 
the frames to obtain the features of the active speech segment. A principal component analysis is 
done to reduce the dimensionality of features. In a similar manner, mel-frequency cepstral 
coefficients (MFCC) and line spectral frequencies (LSF) are also computed on a per-frame basis 
and combined by taking mean over the frames to obtain the features. Then, the active speech 
segments are combined across the segments across an increasing number of active segments till 
all the segments of complete speech utterance are accounted for. The features of the combination 
of active speech segments are computed in a similar manner to obtain the resultant features of the 
combination of active segments. For training of the algorithm, the subjective Mean Opinion Score 
(MOS) of the speech signal that is available from a suitably large and varied training database is 
taken as the subjective Mean Opinion Score (MOS) for each active speech segment or the 
combination of active speech segments. These features along with the subjective MOS are used 
for the training of a joint GMM probability density function and then used to measure the objective 
MOS of each active speech segment or the combination of active speech segments. The overall 
objective MOS of the speech utterance is obtained by taking average of the objective MOS of the 
segments. A results in terms of correlation coefficient of subjective MOS and objective MOS and 
their comparison with the ITU-T Recommendation P.563 has been presented here. 
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1. Introduction 

The speech processing algorithms and codecs are used in modern telecommunication systems and 
thus for monitoring and maintaining the quality of service the speech quality assessment is 
essential at different nodes of the telecommunication system. If the quality of speech is not up to 
the level for customer satisfaction, then feedback can be given to the base station for the proper 
bandwidth allocation to improve the quality of speech and thus the quality of service. There are 
two methods for signal-based speech quality assessment: Intrusive and Non-intrusive or reference-
free. Original clean speech is required for comparison in intrusive speech quality assessment 
method as a reference but in the non-intrusive (reference-free) method of speech quality 
assessment, the original clean speech is not required as a reference and thus it is suitable for speech 
quality assessment at any node of the telecommunication network and system automation.  

Reference-free (non-intrusive) speech quality assessment algorithms depend only on the 
received (degraded) speech utterance to estimate its quality called mean opinion score objective 
listening quality (MOS-LQO) [1]. The ITU-T has standardized Recommendation P.563 in 2004 
for non-intrusive speech quality assessment [2]. Ideally, the speech quality should be assessed by 
subjective listening test using the Absolute Category Rating (ACR) method as given in ITU-T 
Recommendation P.800-Aug.1996 [3].  In which speech is played to the human listeners and the 
average of their opinions about the quality of speech is considered as speech quality for a particular 
speech utterance and called the mean opinion score-subjective listening quality (MOS-LQS). The 
low complexity approach for non-intrusive or reference-free speech quality assessment by GMM 
training and speech quality evaluation with different local and global features obtained from 
speech coders and without considering any degradation model is explained in [4]. The human 
auditory system is modelled explicitly or implicitly leading to the brain to get an opinion score 
MOS-LQO of the speech. The auditory models used in this work are Lyon’s cochlear model [5], 
which takes into account the critical band and masking effect of the human auditory system.  

In this work, the features are computed at multiple time scales called multi-instance features, 
which capture the features of speech at different time scales. Each speech utterance is passed 
through a voice activity detection (VAD) algorithm to get the active speech segments. Now, each 
active speech segment or the combination of multiple contiguous active speech segments of speech 
utterance is divided into frames and features are computed on a per-frame basis using Lyon’s 
auditory model. These per-frame features are combined over the frames to give features of an 
active speech segment or the combination of multiple contiguous active speech segments. In a 
similar manner, MFCC [6], [7] and LSF features [8] are computed at multiple time scales and 
combined to Lyon’s features at multiple time scales to estimate the quality of speech utterance. 
The subjective MOS of the speech utterance is taken as the subjective MOS for each active speech 
segment or the combination of multiple contiguous active segments. These features along with the 
subjective MOS are used for the training of joint GMM and the objective MOS of each active 
speech segment or the combination of multiple contiguous active speech segments are computed 
using GMM parameters. The objective MOS of the speech utterance is computed by taking equal 
weights of the segments. The results in terms of correlation coefficient of subjective MOS and 
objective MOS are obtained and compared with single time-scale features approach of non-
intrusive speech quality estimation as well as ITU-T Recommendation P. 563. 
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2. Multiple time-scale or multi-instances auditory features 

The more detailed statistical information of local features particularly for contiguous speech 
segments can be captured on multiple time-scales, if non-stationary noise is present in the speech 
utterance. Thus, this approach of multiple time-scale features may improve the correlation of 
subjective and objective MOS in speech quality estimation. The degraded speech is input to the 
multiple time-scale auditory feature computation modules. Each speech utterance is passed 
through the voice activity detection (VAD) algorithm to obtain the active speech segments. For a 
speech utterance having three active speech segments, the output of the VAD algorithm is 
schematically shown in Fig. 1.  
 

 

Speech 

 

Figure 1: Concatenation of active speech segments. 
 

The active speech segments at the output of the VAD algorithm are used to make the different 
combinations of multiple time duration active speech segments till all the active speech segments 
are accounted for. The method of making the combinations of active speech segments for a speech 
utterance having three active speech segments is shown in Fig. 2.  
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Figure 2: Combinations of three active speech segments for different multi-instance estimates. 

The first active segment is, say SEG1. Next, the combinations of the first and second active 
speech segments is, say, SEG2. Finally, the combination of the first, second and third active speech 
segments is, say, SEG3. In a similar manner, for S active speech segments in an utterance, there 
shall be K combinations of segments, on the lines of SEG1, SEG2 …..up to SEGK. The active 
speech segment, SEG1 or the combinations of active speech segments such as SEG2 SEG3,…..up 
to SEGK are divided into frames of fixed duration of 16 ms and 64-channel Lyon’s auditory 
features are computed on a frame-by-frame basis after windowing with a Hamming window of 16 
ms duration. These computed features are combined by taking the mean, variance, skewness and 
kurtosis over the frames by concatenating them. Thus, 256-dimension Lyon’s feature vector set is 
generated for a 64-channel Lyon’s auditory model which is reduced to a 30-dimensional feature 
vector set for the first active speech segment, SEG1, by principal component analysis. In the 
multiple time-scale features approach, the duration of active speech segments is varying over time. 
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To preserve more than 99% of the energy, 30 principal components of Lyon’s auditory features 
are used in the multiple time-scale features approach.  

In a similar manner, other features such as 13-dimensional MFCC and 10-dimensional LSF 
are also computed on a frame-by-frame basis by dividing active speech into frames for the first 
active speech segment. The computed 30-dimensional Lyon’s features, 13-dimensional MFCC and 
10-dimensional LSF features are now concatenated to give a 53- dimensional feature vector and 
appended with the subjective MOS of the active speech segment SEG1, which is the subjective 
MOS of the corresponding speech utterance as shown in Fig. 3. 

  
 

SEG1 

 

 

          
 

       

 

Figure 3: Computation of 53-dimensinal feature vector, and appending with the subjective MOS 
for GMM training.  

In a similar manner, 53-dimensional feature vectors are computed for the combinations the 
active speech segments such as SEG2, SEG3 and so on up to SEGK and appended with the 
subjective MOS of the speech utterance. The subjective Mean Opinion Score (MOS) for each 
active speech segment or for the combinations of the active segments is taken as the subjective 
MOS of the speech utterance during the training of the joint GMM. The objective MOS of each 
active speech segment or the combinations of the active speech segments are computed using 
GMM parameters and the 53-dimensional feature vectors. The averaging of the objective MOS of 
the single or multiple combinations of the active speech segments is done i.e. equal weights are 
given to the objective MOS of the single or multiple combinations of the active speech segments 

to compute the objective MOS of the corresponding speech utterance. If ̂ is the objective MOS 

of speech utterance, then it is computed by taking the average of the objective MOS of K SEGs,

i̂ given by, 
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3. GMM training and speech quality estimation 

The subjective MOS score θj from MOS labelled speech databases is appended to the 53-
dimensional feature vector Ψ, (which is a combination of 30-dimensional Lyon’s feature vector, 
13-dimensional MFCC, and 10-dimensional LSF features) and used for the training of a joint 
Gaussian Mixture Model (GMM) using Expectation-Maximization algorithm [9] to obtain the 
parameters of the joint GMM Π(μ(k),ω(k),∑(k)) with k=1,2,3…, M mixture components, where 
μ(k),ω(k), and ∑(k) are the mean, mixture weight, and covariance matrix respectively of the k-th 
mixture component. Thus, [Ψj, θj] is the 54-dimensional feature vector for the j-th training 
utterance, where j=1, 2, 3,….., J is the number of speech utterances used for the training of the 
joint GMM.  

Now, the aim is to get an objective estimator ̂  for the quality of a speech utterance as a 

function of the feature vector i.e., )(ˆˆ    and given the trained joint GMM parameters 

Π(μ(k),ω(k),∑(k)), the objective MOS estimate ̂  is obtained using the MMSE criterion: 

   
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The modelling of the joint density function of the feature vector variables along with the 
subjective MOS scores as a GMM facilitates the estimation: 
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where, ),/( )()( kkN   are the multivariate Gaussian densities, with )(k  being the mean vectors 

and )(k the covariance matrices of the k-th mixture components of Gaussian density. 
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where, μΨ
(k), is the mean of feature vector Ψ, μθ

 (k), is the mean of subjective MOS θ, ∑ΨΨ
(k), is the 

covariance matrix of Ψ, and ∑Ψθ
 (k)

  is the cross-covariance matrix of Ψ and θ. In this investigation, 
M=12 mixture components are used in the GMM for the modelling of the probability density 
function for the combination of the feature vector.  

 For GMM training and objective MOS computation using different feature vectors and GMM 
parameter, “leave one out” procedure is used. Out of 10 subsets of the database, 9 subsets are used 
for training of the GMM and the remaining one subset is used for objective MOS computation. 
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This procedure is repeated (randomly always) to get an objective MOS score list for all speech 
utterances.  

4. Description of Databases 

Three databases are used in this work. First one is ITU-T P. Supplement 23 database [10] of 1328 
speech utterances each of duration 8 seconds, at 332 different degradation conditions and sampled 
at 8 kHz of sampling rate are available in this database along with the ACR labelled subjective 
MOS. The second one is the NOIZEUS-2240 database, obtained from the University of Texas; 
Dallas, USA is a noisy speech database of 2240 speech sentences which contains 20 clean speech 
utterances all sampled at an 8 kHz sampling rate and 3-second duration. The speech utterances are 
degraded by passing through 4 different types of noise namely babble, car, street and train noise 
at 5 dB and 10 dB SNR levels each. To process each speech utterance there are 14 different speech 
enhancement and noise suppression schemes namely MMSE-STSTA (6 algorithms), spectral 
subtraction (3 algorithms), subspace-approach (2 algorithms) and Weiner filtering (3 algorithms) 
are used. A total of 2240 degraded speech sentences with 112 different conditions were used for 
conducting the subjective listening tests in our laboratory. The third database is the NOIZEUS-
960 database which is taken from the NOIZEUS database of noisy speech corpus of 960 speech 
sentences [11]. There are 30 clean speech sentences each of duration 3 seconds and sampled at an 
8 kHz sampling rate. Each speech utterance is degraded with 8 different types of noise namely 
airport, babble, car, exhibition, restaurant, station, street and suburban train at 4 different SNR 
levels (0 dB, 5 dB, 10 dB and 15 dB). Thus, resulting in 960 degraded speech sentences at 32 
different degradation conditions of noise. These speech utterances are used for conducting the 
subjective listening test to get the subjective MOS to make it suitable for the training of GMM.  

5. Computation of results and analysis 

The Karl-Pearson’s correlation coefficient and root mean square error (RMSE) between estimated 
objective speech quality MOS score ̂  and the subjective MOS score θ are used for the 
performance evaluation of different reference-free (non-intrusive) speech quality assessment 
techniques. Results in terms of the correlation coefficient are computed and compared in Table 1 
for condition averaged MOS and Table 2 for unconditioned MOS using three databases. Although, 
in most of the literature condition averaged case is considered but the unconditioned case is more 
realistic and seems to be the true measure of performance as it shows one-to-one speech utterances 
correlation. Results in terms of correlation coefficient by the proposed model (the combination of 
Lyon’s auditory model features, MFCC and LSF feature at multiple time scales or multi-instance 
features) are also compared with ITU-T Rec. P.563, standard for non-intrusive speech quality 
estimation. In Fig. 4 and Fig. 5 results are shown in form of a bar chart for better visualization of 
comparison. Fig. 4 (i) is for correlation comparison and Fig. 4 (ii) for RMSE comparison for 
unconditioned estimated objective MOS. In a similar manner, Fig. 5 (i) is presented for correlation 
comparison and Fig. 5 (ii) for RMSE comparison for condition averaged estimated objective MOS. 
It is observed that there is significant increase in correlation coefficient and reduction in RMSE 
for both conditioned average case of MOS as well as unconditioned MOS for the chosen datasets 
of speech utterances. 
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Table 1: Correlation and RMSE between the unconditioned subjective and the unconditioned 
estimated objective MOS. 

Table 2: Correlation and RMSE between the subjective and the estimated objective MOS for the condition 
averaged case. 

 

 
 

Fig.4 (i) Correlation comparison for unconditioned case of estimated objective MOS 
 

 
 

Fig.4 (ii) RMSE comparison for unconditioned case of estimated objective MOS 
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Database 
No. of speech 

utterances 
ITU-T Rec. P. 563 Proposed model 

Correlation RMSE Correlation RMSE 

ITU-T Supp. 23       1328 0.7168       0.5801 0.9233 0.3356 
NOIZEUS-960        960 0.7169       0.8567 0.9180       0.2770 
NOIZEUS-2240       2240 0.3057       0.9988 0.7007       0.3791 

Database 
No. of speech 

utterances 
ITU-T Rec. P. 563 Proposed model 

Correlation RMSE Correlation RMSE 

ITU-T Supp. 23        1328 0.8159        0.4502 0.9667 0.1686 
NOIZEUS-960         960 0.9512        0.2505 0.9950       0.0398 
NOIZEUS-2240        2240 0.9548        0.4225 0.9862       0.0699 
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Fig. 5 (i) Correlation comparison for condition averaged case of estimated objective MOS 
 

 
 

Fig. 5 (ii) RMSE comparison for condition averaged case of estimated objective MOS 
 

6. Conclusions 

Lyon’s auditory features, MFCC and LSF features are computed for multiple time scales or multi-
instances for an active speech segment or for the combination of active segments. These multiple 
time-scale features are combined for a speech utterance for a non-intrusive (reference-free ) speech 
quality assessment. The overall objective MOS of the speech utterance is computed by taking 
equal weights (averaging) of the MOS of the multiple time-scales estimates.  The results in terms 
of correlation of the subjective and the estimated objective MOS for different types of noisy speech 
database are obtained and compared with the single time-scale results and ITU-T Rec. P.563 and 
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found that the multiple time scales or multi-instance features approach outperforms as compared 
to the ITU-T Rec. P.563, the prevailing standard for non-intrusive speech quality evaluation.  
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