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THE BASIS OF DYNAMIC FILTRATION 

METHODS 
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Abstract--- The problems of constructing algorithms for the sustainable recovery of unknown signals in 

dynamic control systems are considered. Algorithms for recovering input actions based on dynamic filtering 

methods and solving incorrectly posed problems are presented. The regularized Cholesky factorization method for 

symmetric matrices is used as a regular procedure. The above algorithms make it possible to stabilize the matrix 

inversion procedure when assessing the state of stochastic objects and thereby improve the accuracy of determining 

the true state vector estimate under perturbation of the object and observer parameters. 
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I. Introduction 
The task of restoring the initial state and input of a dynamic system from the results of measuring the output 

belongs to the class of inverse problems of the dynamics of controlled systems [1]. Since the indicated problem is 

incorrectly posed, methods developed in the corresponding theory should be applied for its solution [2–9]. 

Consider a linear dynamic system with the observation:  

( ) 0
01 , xkxwBxAx kkkkk =+=+ ,     (1) 

kkkkk wDxCy += ,         (2) 

where mpn RyRwRx ∈∈∈ ,, ; kxx =  – state of the system; 0x  - initial state of the system; p
k Lw 2∈  - 

input unmeasured disturbing effect on the system; m
k Ly 2∈  - system output; kkkk DCBA ,,,  - matrices of 

corresponding dimensions. 

Let  
mpn LYLR 22 , =×=Θ . 

We transform the space Θ  into a Hilbert space by defining the scalar product  
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Relations (1), (2) determine the linear operator YF →Θ: , which each pair ( ) Θ∈= wx ,0θ , i.e. system 

input, associates function Yy∈  at the system output. Let *y  be some output of system (1), (2). We denote by *Θ  

the nonempty set of all inputs Θ∈θ  such that  

.*yF =θ            (3) 

II. Formulation of the problem 
Consider the variational problem  

( ) ,min, *Θ∈→Ω θθ  

where R→ΘΩ :  is a non-negative, lower semicontinuous and strictly uniformly convex functional. 

Consider the following task: on output *y , restore Ω  - a normal input compatible with this output. 

Suppose that the output *y  is not known to us, and only the function Yy ∈δ  (the result of measuring the output) is 

known such that  

,* δδ ≤−
Y

yy  

where δ  is a known non-negative parameter characterizing the accuracy of the measurements. In this case, it is 

impossible to accurately restore the set *Θ  and especially the element ** Θ∈θ . Therefore, we pose the problem of 

the approximate restoration of the element ( )*0
*

* , wx=θ  according to the results of inaccurate measurements of 

the output *y  under the assumption that the matrices DCBA ,,,  and functional Ω  are known exactly. Using 

function δy  and parameter 0>δ , it is necessary to find a pair of ( )( ) Θ∈⋅= δδδθ wx ,0  such that  

0* →−
Θ

θθδ  

at 0→δ . 

III. Decision 
To solve equation (3), you can also use the concept of dynamic filtering. To dynamite equation (3), we 

write it in the form:  

,)0(, 01 θθθθ =+=+ kkk w      (4) 

...),,1,0(111
*

1 =+= ++++ kvFy kkkk θ  
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where kθ  - state vector of the system, *
ky  - measurement vector, kw  and kv  – Gaussian white noises with zero 

mathematical expectation and intensities of kQ , kR , 0θ  – Gaussian random vectors with known characteristics of 

)( 0θM  and 000 )( PM T =θθ .  

We will assume that kw  and kv  are not correlated with 0θ , but  

[ ] ,0, ≠= kkjk
T
jk SSvwM δ  

where kjδ  is the Kronecker symbol. Matrix kR  is positive definite. 

It is also assumed that  
0
kkk wvw += , 

where  

[ ] 00 =T
jk vwM ,  

at [ ] kjk
T

jk QwwMjk δ000,, =∀ . 

In accordance with [10], we have  

]|[ˆˆ
1 kkkkkk ywM+=+ θθ .     (5) 

It can be shown that in the case under consideration, condition  

[ ]




=
<

=
,,
,,0*0

kjеслиS
kjесли

ywM
k

T
jk      (6) 

is satisfied. 

Based on the properties of conditional mathematical expectations [11], as well as relation (6), we obtain  

]ˆ[]|[ 1
*

−−= kkkkkkk FyWywM θ ,    (7) 

where  
1

1 ][ −
− += k

T
kkkkkk RFPFSW ,             (8) 

jkP ,  – correlation matrix of the estimation error jkkjk || θ̂θε −= . 

Substituting (7) into (5), we find  

]ˆ[ˆˆ
1|

*
||1 −+ −+= kkkkkkkkk FyW θθθ .    (9) 

Based on the representations of [10, 12], we express 1|1
ˆ

++ kkθ  in terms of kk |1
ˆ
+θ : 

*
|11|11|1

~ˆˆ
kkkkkkk yK +++++ +=θθ , 

1
11|11

−
++++ = k

T
kkkk FPK P ,              (10) 
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11|111 +++++ += k
T

kkkkk RFPFP ,     (11) 

1|11
*

|1
~~

++++ += kkkkkk vFy θ ,    kkkkk |11|1
ˆ~
+++ −= θθθ , 

]ˆ[][ˆ
1|11

*
1

1
11|11|11

*
1 ++++

−
+++++++ −+=− kkkkk

T
kkkkkkkk FyIRFPFFy θθ , 

where )( 1+kG Pα  – generating system of functions for the regularization method, α  – regularization parameter. 

Then  

]ˆ[ˆˆ
|

*
||1 kkkkkkkkk FyD θθθ −+=+ ,          (12) 

where  
1−= kkk RSD . 

A matrix 1+kP  of the form (11), the pseudoinverse of which +
+1kP  is used in (10), is a symmetric ill-conditioned 

sign-indefinite matrix. In order to stabilize the desired solution and give greater numerical stability to the pseudo 

inversion procedure in (10), it is necessary to use regular methods [13-19]. When implementing (10), we will use the 

regularized Cholesky factorization method for symmetric matrices [20]. 

Based on a symmetric matrix 1+kP  of order n  with ijk ,1+ρ  elements, a sequence of matrices is constructed: 

,...,1,0,
0 )(

3,1

)(
2,1

)(
1,1)(

1 =







=

+

++
+ rr

k

r
k

r
kr

k P
PP

P     (13) 

where )(
1,1

r
k+P  – an upper triangular matrix of size kk × , )(

2,1
r

k+P  – rectangular matrix, )(
3,1

r
k+P  – symmetric matrix 

of order kn − , 0 – zero matrix. 

For this, the leading element is determined in cell )(
3,1

r
k+P  by comparing its maximum elements standing on the 

diagonal and outside the diagonal:  

)(
,1,

)(
,1

)(
,1,1 max,max r

ijknjinik

r
sk

r
iiknikk +≤<≤<++≤<+ == ρρρρ τζζ . 

If )(
,1

)(
,1

r
sk

r
k τζζ ρρ ++ ≥  and ερ ζζ >+

)(
,1

r
k , then the matrix )(

1
r

k+P  swaps the ζ -th row and column with 

)1( +k -th row and column, respectively. 

After permutations, the matrix )1(
1
+

+
r

kP  is determined, which differs from that obtained after permutations )(
1

r
k+P  

only by the elements of the cell  









= ++

+
k

Tr

rr
kkr

k Wd
d

)( )(

)()(
1,1)(

3,1
ρ

P ,     (14) 

which takes the form  
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










+

+

++

)1(
3,1

)(2/1)(
1,1

ˆ0 r
k

rr
kk

P
αρ

,      (15) 

where )(
1,1

)(2/1)(
1,1

)( sign r
kk

rr
kk

r d ++

−

++= ρρα , )()(1)(
1,1

)(
3

)1(
3,1 )()( rTrr

kk
rr

k ddW −
++

+
+ −= ρP . Then, the transition to 

the next factorization step is made. 

If )()( r
s

r
τζζ ρρ <  and ερτ >)(r

s , then the orthogonal transformation  

n
jiiil bB 1,)( == ,      (16) 

is introduced, the elements of which coincide with the identity matrix, with the exception of four elements defined 

as follows: 2/12−===−= ττττ ssss bbbb . The matrix  

l
r

kl
r

k BB )(
1

)(
1

ˆˆ
++ = PP , 

is calculated, then the τ -th column and the s-th row are rearranged from the )1( +l -th column and )2( +l -th 

row so that the resulting )1( +l -th diagonal element is the largest. Next, a recount is made in accordance with (14), 

(15) of the elements of cell )(
3,1

ˆ r
k+P  and the transition to the next factorization step is carried out, while )1(

1
+

+
r

kP  is 

taken as received )1(
1

ˆ +
+
r

kP . 

As soon as ερτ ≤)(r
s  and εζτ ≤)(ra , the factorization process stops and the non-orthogonal factorization 

of the matrix F is determined in the form  

εεε UIU T
k

ˆˆˆ
,1 =+P ,  )(

ˆ
ll BUU =ε , 

where the upper trapezoidal matrix )( )(
2,1

)(
1,1

r
k

r
klU ++= PP   is composed of cells )(

1,1
r

k+P  and )(
2,1

r
k+P  of the resulting 

matrix (13); 1)( ...BBB ll = , where IBi =  if conversion (16) was not performed; Î – diagonal matrix with a l -th 

diagonal element defined as )1(signˆ −= r
lll fi . 

If the symmetric matrix 1+kP  of order n  has a rank of nr ≤  and the regularization parameter is taken 0=ε  

[17-21], then in the regularized Cholesky method exactly r  factorization steps and  

T
r

T
rrrkkk BUIUB )()(11,1 )(ˆ, +++

+++ == PPP ε  

will be taken. 

If, in addition, 1+kP  is a non-negative definite matrix, then the leading element is the diagonal element, Î  is the 

identity matrix, and thus 
T

rrkkr
T
rk UUUU )(, ,11,1

+++
+++ === εε PPP . 

By virtue of [11,22], the optimal current estimate of the state vector is determined using the relation:  
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],,...,|[ˆ *
1

**
111|1 ++++ = kkkkk yyyM θθ , 

]~|[],...,|[],,...,|[ *
|11

**
11

*
1

**
11 kkkkkkkk yMyyMyyyM +++++ += θθθ , 

],...,|[~ **
1

*
1

*
1

*
|1 kkkkk yyyMyy +++ −= , 

]~|[ˆˆ *
|11|11|1 kkkkkkk yM +++++ += θθθ .             (17) 

Now using equations (12) and (17), we can obtain the optimal filter equation:  

,0ˆ,][]ˆ[ˆˆ
0|0

*
11|

0
1

*
11|

0
1|1 =−+−+= +++++++ θθθθ kkkkkkkkkkkkkkk yDFKIAFyKA 111, 

where  

.0
kkk FDIA −=  

Based on (4) and (12), we can write:  

,|
0

|1 kkkkkkk vA Γ+=+ εε  

where  
TT

k
T
kkkk vwvDI ),();,( =−=Γ , 

with  

,][ 







==

k
T
k

kkT
kkk RS

SQ
vvML  

0][ | =Γ T
kkkk vM ε . 

Then 
T
kkk

T
kkkkkk LAPAP ΓΓ+=+
0

|
0

|1 , 

1|| ][ −−= kkkkkk PFKIP , 00|0 PP = .             (18) 

From equations (9) and (17) we find  

]ˆ[ˆˆ
1|

*0
1||1 −−+ −+= kkkkkkkkk FyK θθθ , 

where  

kkk WKK +=0 , 

or by virtue of (8) and (10):  

)(][ 11|
0

+− += kk
T

kkkk GSFPK Pα . 

Then we get  

.)( 0
1|11|

00
1|

0
|1

T
kkk

T
kkkkk

T
kkkk

T
kkkkkk LAPFGFPAAPAP ΓΓ+−= −+−−+ Pα        (19) 

Equation (19) is a discrete Riccati equation, the research methods of which are given, for example, in [10]. Matrix 

kD  arises as the natural designation of the transfer matrix in equation (12). Note that the assumption that 
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0)( 0 =θM  is irrelevant and can be taken into account by introducing the initial condition of the optimal filter 

equation:  

)(ˆ
00|0 θθ M= . 

The constructed algorithm generates an estimate of  

)0,|(ˆ *
| kiyM ikkk ≤≤= θθ  

by processing the current measurements *
ky  in conjunction with previous measurements *

1−ky . 

The structure of the filtering algorithm for mutually correlated noises, as well as the structure of a similar 

algorithm for the case of uncorrelated noises, obviously splits into two structural units “forecast” and “correction” 

characteristic of the least squares method. Like the filter for the case of uncorrelated noise, the recurrent filter in 

question represents a negative feedback system. The functionality of such a system depends on its dynamic 

properties, on the stability and quality of the corresponding algorithm. 

The stability of the filtering algorithm under mutually correlated noises as a property of a closed loop of the 

algorithm, independent of external factors, characterizes, according to  

]}ˆ[{ˆˆ *
|

0
1

*
11

*
|

0
1|1 kkkkkkkkkkkkkkk yDAFyKyDA +−++= +++++ θθθ , 

the features of solutions of the homogeneous equation  

kkkkkkk AFKI |
0

1|1
ˆ][ˆ θθ −=++ . 

The quality of the recurrent filtering algorithm for mutually correlated noise is determined by the equation 

of the second moments  

T
kkk

T
k

T
kkkkkkk

T
k

T
k

T
kkkkkk

T
kkkkkk

T
k

T
kkk

T
k

T
k

T
kkkk

T
kkkkkk

KRKKFQFKQFKKFAPAFK

APAFKKFQQKFAPAAPAP

11111
0

11
0

1111
0

|
0

11

0
|

0
1111

00
11

0
|

00
|

0
1|1

+++++++++++++

++++++++

++−+

+−−+−=
 

or, respectively, by the system of equations 00
|

0
|1 k

T
kkkkkk QAPAP +=+  and (18) under condition (10). 

The structure of the constructed algorithm clearly reveals in it the continuity with classical filtering 

algorithms for uncorrelated noises and indicates the possibility of using theoretical results obtained for uncorrelated 

noises for filtering algorithm analysis with mutually correlated noises. 

IV. Conclusion 
The above algorithms make it possible to stabilize the matrix inversion procedure when assessing the state of 

stochastic objects and thereby improve the accuracy of determining the true state vector estimate under perturbation 

of the object and observer parameters. 
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