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Fixed Point Theorems Via Best Approximation
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Abstract
In this paper, we prove some common fixed point theorems of Gregus type in Banach spaces and give application of our
fixed point theorems to best approximation theory. Our work generalizes several earlier results on fixed points in this
direction.
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1 INTRODUCTION:

Several interesting results using fixed point theory are given in approximation theory. During the last 130 years or so
this area has attracted the attention of several mathematicians.

The fundamental result in the best approximation theory was given by Meinaradus [11], afterwards in (1969),
Brosowski [1] theorem has been a basic important result, many authors have studied the applications of fixed point
theorem to best approximation theory. Subrahmanyan [21], S.P. Singh [18], M.L. Singh [18], Carbone ([2] [3]), Sahab,
Khan and Sessa [14], Hicks and Humphries [15], In (1988), Sahab, Khan and Sessa [14] generalized the result of Singh
[19], Recently Pathak, Cho-kang [13] gave an applications of Jungck’s [9], fixed point theorem to best approximation
theory they extended the result of Singh [19] and Sahab et. al. [14].

In this paper, we prove some common fixed point theorems of Gregus type for compatible mappings and weakly
compatible mappings in Banach spaces and give application of our fixed point theorems to best approximation theory.

2 PRELIMINARIES:
The following definitions and results will be used in this paper.

2.1 Definition :
Let C be a subset of normed linear space X. Then

(i) Amapping T : X — X issaid to be contractive on X. if ||TX —Ty|| < ||X - y|| for all x, y in X (resp. C)

The set Daof best (C, a)- approximants to X consists of the point y in C such that
a||y - )_(| =inf ﬂ|z - )_(” 'Z€ C}, where X in a point of X, then for 0 <a <1.

(i) Let D denote the set of best C-approximants to X. for a = 1, our definition reduces to the Set D of best C-
approximants to X.

(iii) A subset C of X is said to be star-shaped with respect to a point g€ C if, for all x in C and all A €[0,1],
AX+ (1—A)q € C ,where the point q is called the star-centre of C.

(iv) Aconvex set is star-shaped with respect to each of its points, but not conversely. For an example, the set
C ={0}x[0,1] U[L0] x{0} is star-shaped with respect to (0,0) € C as the star-centre of C, but it is not
convex.

Throughout this chapter F (T) denotes the set of fixed points of T on X.
By relaxing the linearity of the operator T and convexity of Din the original statement of Brosowski [1],Singh
[19]proved the following results.

2.2. Theorem:
Let C be a T-invariant subset of a normed linear space X. Let T :C — C be a contractive operator on C and let
X e F(T).if D< X isnonempty, compact and starshaped, then D N F(T) = ¢.
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In the subsequent paper Singh (19), observed that only non expansiveness of T on D'= DwW{X} is necessary.

Further, Hicks and Humphries (7) have shown the assumption T :C — C can be weakened to the condition
T:0C—>C yeC,ie, yeD isnotneceassarily in the interior of C, where 0C denotes the boundary of C.

Recently, Sahab, Khan and Sessa [14]generalized Theorem 2.2 as in the following.

2.3 Theorem:
Let X be a Banach space let T,l: X — X be operators and C be a subset of X such that T : 0C — Cand

X € F(T) N F(l). Further, suppose that T and I satisfy
[Tx =Ty <[x=1y|

forall x, y in D', I is linear, continuous on D and ITx = TIx for x in D if D is non empty, compact and starshaped with
respect to a point 0 € F (1) and 1(D)=D, then DNF(T)NF(l) = ¢.

In [8], Jungck defined the concept of compatibility of two mappings, which includes weakly commuting mappings
Sessa [15] as proper sub class.

2.4 Definition :
Let X be a normed linear space and let S, T : X — X be two mappings S and T are said to be compatible if, whenever

{xn} is a sequence in X such that Sx,TX, — X € X, then
|ISTX, —=TSx,| > 0asn—» o0

In (1998), Jungck and Rhoades[10] introduced the notion of weakly compatible maps and showed that compatible maps
are weakly compatible but converse need not be true.

2.5 Definition :
A pair of Sand T is called weakly compatible pair if they commute at coincidence points.

2.6 Example :

Consider X = [0,2] with the usual metric d. Define mappings S, T : X — X by
Sx=0ifx=0,Sx= 0.15if x>0

Tx=0ifx=0,Tx=0.3if0<x < 0.5, Tx=x-0.35if x>0.5

Since S and T commute at coincidence point 0 € X, so S and T are weakly compatible maps to see that S and T are not

compatible, let us consider a decreasing sequence {X.} where Xn=0-5+[1}“=1,2:--- Then
n

Sx, — 0.15,Tx,, — 0.15 but STx, — 0.15,TSx, — 0.3 as Nn—>oo. Thus weakly compatible compatible
maps need not be compatible.

3. MAIN RESULTS:

First of all, we prove a common fixed point theorem of Gregus type for compatible mappings in Banach space. Our
Theorem is improvement of results of Gregus [6], Jungck [9], Sharma and Deshpande [17].

Throughout this section, we assume that X is Banach space and C is non empty closed convex subset of X.

Now, we prove our main theorem.

3.1 Theorem :
Let S and T be compatible mappings of C into itself satisfying the following condition:

[Tx —Ty| < a|Sx—Sy| +b maxﬂ|Tx — S|, [Ty — Sy||}
+C maxﬂ|8x — Sy||, [Tx — x|, [Ty - Sy||}

1
+d max{[Sx - Syl [Tx - x|, [Ty — Sy}, 2 (fTy — x|+ [Tx - sy[} Se)
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for all x, y in C where a,b,c,d>0, a+b+c+d=1 and a+c+d< \Ja if s is linear and continuous in C and T(C)cS(C).
Then T and S have a unique common fixed point z in C and T is continuous at z.

Proof :
Consider x = xo be an arbitarary point in C and choose points X, X2 and x3 in C such that

Sx1=TX, SX2=Txy, SXs=T X2
This can be done since T(C) < S(C). forr=1,2,3,... (1) leads to
[T, = Sx.[[ =[x, =Tx,
< a|Sx, —Sx, | +b maxﬂ|Txr = S|, [T,y — SXH”}
+cmax{|Sx, — X[, [Tx, — Sx [, [T, - er_l||}

1
+d maxﬂ|8xr =S¥,y | [T, = Sx ||, [T,y =S¥, 5 (“Txp1 - Sx, |+ [T, — Sx,71||)}

which shows that,since
5%, = %, =[x, ., - 5%,
we have, forr=1,2,3,...
[T, =S, || < [T,y =S4 - (2)
From (1) and (2) we have
T, — 5] =[x, ~T¥|

<a|Sx, —Sx|+b maxﬂ|Tx2 — SX, |, [Tx - Sx||}
+C max{“sz — Sx||,[Tx, — X, |, [Tx - Sx||}
1
+d maxﬂ|8x2 — SX||,[[Tx, = Sx, |, [Tx - SX], E(“TX — SX, || +|Tx, — Sx||)}
< alTx, — x| + b max{[Tx — Sx|, [Tx - Sx|}
+C max{“'l’xl — Sx||, [Tx — x|, [Tx - Sx||}
1
+d maxﬂ|Tx1 — x|, [Tx — Sx{|,[Tx — Sx]|, E(“TX =T, || +[Tx, - Sx||)}
< 2a|[Tx — Sx| + b|[Tx — Sx| + 2¢|Tx — Sx| +d maxﬂ['l’x1 — x|, [Tx — S, [Tx — S,
1
g(llTX = S|+ [T, = % |+[[Tx, = Sx, |+ Sx, — $x])}
< 2a[Tx — S|+ b|[Tx — S|+ 2¢[Tx — S|+ d maxﬂ['l’xl — Sx||,[Tx — Sx],[Tx — Sx],
1
5 (= S|+ [T = 5] + [T, — Sx])}
< 2a|[Tx — SX| + b|[Tx — SX||+ 2c|[Tx — Sx| + 2d|[Tx — SX|
<{(2a+2c+2d) +bj|Tx - SX| .3)

We shall now define a point

Ao

Since C is convex, Z € C and S being linear

Sz= (%)sz + (%)S&
1 1
(3 (3 -
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It follows from (2), (3) and (4) that
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(%)Txl + (%)sz - Sx;

(o

lj mx —Sx||+[%j {(2a+ 2+ 2d) + bljTx— S

J{1+(2a+ 2c+2d) +bjTx — SX| (5)

< @ mx-sx]. -®)
(

1
Tz -Te, |+ [5] 2Ty
1
a||Sz—Sx1||+(§)bmax {2~ s2), T, — S,

C max ﬂ|Sz —Sx,||, [Tz - S2|}, [Tx, - Sx1||}

A A

d maxc 2 - x|, 2 sz, [, - 5x

I
=

1 1
I, — 2]+ [Tz = S+ [E] Sz S|+ @ b max Tz — Szl [T,  S1}
Cc max ﬂ|Sz — Sx,||, [Tz - Sz}, [T, - Sx2||}

d max ﬂ|Sz — SX, ||, [Tz — Sz}, [Tx, — Sx,

%, = 2] + [Tz - Sx,| )}

a[l+2a+2c+2d +b]|Tx — Sx| + (%)b max ﬂ|Tz —Sz||,[Tx - Sx||}

NI o
N— S

N |-

=

cmax {% (1+2a+2c+b+2d)[Tx — SX|,[Tz — Sz}, [Tx - Sx||}

d maxB (1+2a+ 26 + b+ 20)[Tx — $¢], [Tz — 2] [Tx — x|,
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| =

{2+ 28+ 2¢ + 2d + b)Tx =S¥+ Tz - Sz||}} . (%j afTx— S|
‘ (E) b max [Tz — Sz, [T — Sx[}+ @ ¢ max {% [T = S, [Tz = Sz, [T — Sx||}

. @ d max {% xS 12 -2 x5, 24+ 12 - sz}

< A|Tx =S| ()

= N

where

ﬁ:(%ja[2+2a+20+2d +b]+b+%c[1+2a+20+b+2d]
1 1
+Ec+zd[2+2a+2c+b+2d]+d

<%a(3+\/5)+%c(2+\/5)+b+%c+%(3+\/5)+d

<9+3—a+b+c+d
4 4

=a+b+c+d=1

So we have 0< A <1.
Sincex is an arbitary point in C, from (7), it follows that there exists a sequence {zn} in C such that

[Tzy — Sz < A[TXy — SX, |
[Tz, — Sz, < A|[Tzy — Sz,

[Tz, —Sz,| < A|Tz,_, — Sz,.4],
which yield that

[Tz, = Sz,]|< A" [TXy = SX, |
and so we have

lim,,. [Tz, - Sz,|=0 (8)

1
Setting K, = {x e C:|Tx—Sx| < —}
n
forn=1,2, ... then (8) shows that
K,#¢ forn=1.2,...

and K, o K, oK; o...

obviously, we have TK, # ¢ and

TKn :)TKnJrl forn=1,2,...

for any x, y in K, by (1), we have
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[Tx—Ty]| < a]sx - Sy| + n"*b+ cmax{|sx— Sy|,n*}
+d max{“Sx -Sy|.n7, %(n‘1 +[Sx—Sy[|+n7 +Sx— Sy||)}

<a|Sx—Sy|+n~'b+c max{“Sx -8y n’l}
+d maxﬂ|Sx —Sy[,n”, (n‘1 +[Sx— Sy||)}
<a@n™ +|Tx-Ty])+n7b+c@n™ +[Tx-Ty[) + d@n* +[Tx - Ty])
=[a+c]2n™ +[a+c+d][Tx-Ty|+n"'b+3n""d
Therefore,
[Tx=Ty|<n™{2[a+c]+b+3d}l-a-c—d)™
Thus we have -
lim, , diam(TK, )=lim,, diam(TK =0

By Cantor's theorem, there exists a point u in C such that

n—o0

o0

N K, )=}

n=1
Since U € C foreachn= 1,2,... there exists a point Y, in TK, such that
-1
[yn —ul<n
Then there exists a point x, is Ky such that
lu=Tx,|<n

andso Tx, ->u as n—> .
Since X, €k, we have also

[Tx, = Sx,||<n”*

andso SX, ->U as N — .
Since S is continuous STX,, — Su and SSx, — Su as n — .

Moreover"'I'SXn ~ STXn” —0asn—ow,

Since S and T are compatible and TX, — SX, — U as n—oo , we have TSX, — Su.

By (1), we have
[Tu = Su|| <[[Tu = TSx, | +|TSx, — Sul

< al|Su — SSx, |+ b max{[Tu — Sul, [TSx, — SSx, }
+cmax{|Su — SSx, |, [Tu — Sul, [TSx, — SSx, }
+d max{|Su — SSx, |, [Tu — Sul,[TSx, — S5, ,

5 (s, —Sul +[ru - 5, +[Tsx, - su]

Letting N — o0, we obtain
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[Tu - Su| < a||Su — Su|+ bmax{[Tu — Sul,|Su - Sul}
+ ¢ max{|Su — Sul|,[Tu - Sul, |Su — Sul}
+d max{|Su — Sul, [Tu - Sul|[Su - Su,

~(1su-su+ Tu - sul)}+[su-su
=(b+c+d)|Tu—Sul
=(1-a) |Tu—Sul.

So we have Tu = Su.
Thus TSU = STu and TTu =TSu = STU since S and T are compatible. Furthermore, we have

[TTu —Tu| < a|STu - Suf|+ b max{[TTu — STul,[Tu — Sul}
+cmax{|STu - Sul,[TTu — STul,[Tu — Su}
+d max{|STu — Sul|,[TTu - STul,[Tu - Sy

- (ru=sTul+|TTu - sul)}

=(a+c+d)[TTu—Tul
This leads to [TTu —Tu|= 0 since (a+c+d) <+a.
Let Zz=Tu=Su.

Then Tz=zand Sz=STz=TSz =Tz =z.

Thus z is a unique common fixed point of T and S. The uniqueness of z is a consequence of inequality (1). Now, we
show that T is continuous at z. Let {yn} be a sequence in C suchthat y, — Z.

Since S is continuous, Sy, — Sz, By (1), we have
[Ty, —Tz| <a|Sy, — Sz| +b maxﬂ|Tyn — Sy, | [Tz - Sz||}
+C max{“Syn - Sz||,[Ty, = Sy, [Tz - Sz||}

+d maxi[sy, — sz, [Ty, - Sy, [Tz - s, % (72 sy, |+ [Ty, - S|}
<a|Sy, —Sz+b maxﬂ|Tyn —Tz|+|Tz - Sy, ||}
+C maxﬂ|Syn —Sz|,[[Ty, = Tz||+|Tz - Sy, ||}
- dmax{y, - 2} [Ty, ~Te] + T2 - Sy, 2 -5,
(2 sy, +[1y, - s2])
< alsy, - Sa] +biy, ~Ta|+ 52 y,[} iy, ~To|+ 525y,

+d ﬂ[‘l’yn —Tz||+[Sz - Sy,|,
[Ty, =Tz| <(@a+b+c+d)|Sy, —Sz|+ (b+c+d)[Ty, - Tz
<(a+b+c+d)d-b-c—d)*|sy, -S|

Therefore, we have Ty, — Tz and so T is continuous at z.

This completes the proof.
As a consequences of our Theorem 3.1, we have the following results.
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3.2 Corallary:
Let S and T be compatible mappings of C into itself satisfying the following condition:

[Tx —Ty| <a|Sx—Sy|+b maxﬂ|Tx —Sx||, [Ty - Sy||}
+C maxﬂ|8x — Sy|.[Tx — Sx|, [Ty - Sy||}

for all x, y in C where a,b,c>0, a+b+c=1 and a+c<~/a if S is linear and continuous in C and T(C)cS(C). Then T
and S have a unique common fixed point z in C and T is continuous at z.

Corallary 3.1.1 shows the result of Sharma and Deshpande [16], which obtain by puttingd = 0.
Now if b=0, ¢=0 then we get the following corallary

3.3 Corallary:
Let S and T be compatible mappings of C into itself satisfying the following condition:

[Tx—Ty|| < a|Sx— Sy + (1-a) max{”Tx — SX|, [Ty - SyH}

forall x, y in C, 0 <a <1, if S i linear and continuous in Cand T (C) < S(C), Then T and S have a unique common
fixed pointz in C and T is continuous at z.

3.4 Remark :
Corallary (3.3) also proves continuity of T, so it improves the result of Jungck[9].
if we put a = b = ¢ =0 then we get the following result

3.5 Corallary :
Let S and T be compatible mappings of C into itself satisfying the following condition:

1
Irx Ty < o maxfsx— Syl ox -6 1y~ syl 51y 4]+ [rx )}

forall x,yin Cwhere 0< d <1, if Sis linear and continuous in Cand T (C) < S(C). Then T and S have a unique
common fixed pointz in C and T is continuous at z.

To demonstrate the validity of our Theorem 3.1, we have the following example

3.6 Example :
Let X =R and C=[0,1] with the usual norm. Consider the mappings T and S on C defined as

Tx=£11x and Sx=;x for all xeC

Th oL _lo 1|
en T(C)_[o, 4:|CS(C)—|:0, 2}

It is easy to see that S is linear and continuous.
Further, T and S are compatible if lim__ x, =0, where {x,} is a sequence in C such that

lim__ Tx, =lim_,_Sx, =0 forsome 0C.

If we take @ =1/9,b =13/18,¢c =3/18,d = 0 we see that the condition (1) of our Theorem 3.1, is satisfied also we
have

a +b+c=1and a+C<\/a.

Thus all the conditions of Theorem 3.1 are satisfied and 0 is the unique common fixed point of S and T.
Now, in our next theorem, we give an application of our fixed point theorem to best approximation theory. We improve
the results of Pathak, Cho-Kang [13]and Sharma-Deshpande[16].
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3.7 Theorem :
Let T and S be mapping of X into itself. Let T :0C —> CandX € F(T)F(S) . Further, suppose that T and S

satisfy the condition (1), for all x, y in D, =D, u{x}u E , where

E={qgeX:Tx,,Sx, = q,{x,}<= D,}, ab,cd>0, a+b+c+d=1, a+c+d<+/a, S is linear, continuous on D, and
T,S are compatible in D, if Da is nonempty, compact, convex and S(Da)=Da, then D, "F(T)NF(S) = ¢.

Proof :
Let y € D, and hence Sy is in Dasince S(D,)=D,.

Further, if Y € 0C,then Tyisin C, since T (0C) < C. from (1), it follows that

ITy — Il = ITy — Txl| < allSy — SxIl + bmax{||Ty — Syll, ITx — Sx|I}
+emax{||Sy — S|, ITy — Syll, ITx — Sx|I}

+dma sy — %I, ITy = Syl IT% ~ %1, 5 (1T% — syl + IITy - 521D}
[Ty —x] < alsy - x|+ bmaxi[Ty - Sy, |x - X[}
+cmax{lsy — x|,y - Syl |x - X[}
i} o Lo .
+d max{lsy — [Ty - Sy Jx = x], - (1%~ y] +[Ty - x|}
[Ty =] < alsy—x|+bi{Ty - x|+ [x -y}
+omax{fSy — x|, [Ty — x|+ [ - sy[}
. L i}
+dmax{jsy - x| [Ty —Syl, - (% -yl +[Ty - %]}
[Ty =] < a8y - 2|+ b{fTy = x|+ [ - Sylj+ c{Ty — 3] +x — Syl

; e 1 ;
+d max{|Sy x|, [Ty — x|+ [x — Syl 2 (| - syl +[ry - x|}
[Ty =] < al}Sy x|+ b[Ty x| + bl}x = Sy|+ c|Ty x| + c| - Sy

+d Ty -] +x - sy}
Ty -X|<(a+b+c+d)|Sy—x|+ (b+c+d)[Ty—X|

t-b-c-d)[Ty - x| <[sy-¥]
a|Ty - x| <[sy—x],
which implies a||Ty - )_(|| < ||Sy - )_(” and so Ty is in Da. Thus T maps D, into itself.

Proceeding as in Theorem 3.1, we can show that

lim__ Sx,=lim_,Tx, =u (9)

n

Therefore, for a sequence {x} in Da the existence of (9) is guaranteed whenever Da < Kn. Moreover U € E . Since
S and T are compatible and S is continuous, we have

lim__,_ TSx, =Su
and lim__S?x, =Su

N—o0

By (1), we have
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[Tsx, —X||=|TSx, = TX|

<a[s?x, —Sx|+b maxﬂTan = S°%, | [Tx - S)_("}

% - sx]}
Jrx-sx|

+C maxﬂs X, - S)‘(H, ”‘I’an —~S%x,
+d max{s?x, - Sx|,[Tsx, - 52,

+[Tsx, - S|}

%Q‘Ti—szxn

which implies, as N — o
[su—x| < a|su—x|+bmax{|su—Sul,|x-x|}

+ e max{Jsu - ], |5 — Sul |x - %[}

+d maxd{su - x|, |su - Sul,[x - x|, %(JIY — Sul +[su - x|}
< a|Su—X||+c|Su—X| +d|Su-X|
|su-x|<+a|su-x]|.
Hence SU = X, By (1) again, we have
[Tu—x]| = [Tu-Tx]|
< a|Su — S| + b max{[Tu — Su, [T% - SX|}
+cmax{|Su — Sx|,[Tu — Sul, [T% - x|}

+d maxﬂ|Su — SX|,[Tu — Sul|, |[Tx — SX| %(“T)‘( — Su||+Tu - S>‘<||)}
which gives, by taking SU = X
[Tu - x| < % - x| + bmax{[Tu - x|, |x - %]}

+emax{[x x| [Tu -], Jx — [}

- o e o oo < =
+d maxx x| [Tu = x], [« = %], 2 (% = %] +[[Tu - ]}
<bffTu %] + c|Tu — % + d[Tu — |

Tu-x| <@-a)Tu-x|

So Tu=X.
Next, we consider

[Tu—Tx,| <a|su—Sx,|+b maxﬂ|Tu — Sul,[Tx, — Sx, ||}
+cmax{|Su — Sx, |, [Tu = Sull[Tx, — Sx, [}

+d maxﬂ|Su — S, ||, [Tu = Sul},[Tx, = Sx, %(“Txn — Su|| +|[Tu — Sx, ||)}

Letting N — 00, we get
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[ ~ul < af)x — uf + b max{jx — x| Ju — uf}+ c max{[x ul, [x ] Ju~ u[
- o o 1 o lle
+d max{[® —ul [~ < Ju ~u, > (u - %]+ - ul)§
[x—u| < (@+c+d) [x—u]
<+a ||)_(—U||,since a+c+d<+a
andso X =U, i.e., u=Su=Tu. By Theorem 3.1, u must be unique.

Hence E = {u}. Then D} = D, U{u}

Let {ka} be a monotonically non-decreasing sequence of real numbers such that 0 <k, <1 and Wn% kn =1
Let {x;}be a sequence in D; satisfying (2), for each N € N, define a mapping T, : D; - D; by

T, X; =k, Tx; +@-k,)p

for each N € N , it is possible to define such a mapping T,. Since D. is starshaped with respectto P € F(S).

Since S is linear, we have

T,SX; = knTij +1-k,)p,
ST, Sx; =k, STx; +(1-k,)p.

By compatibility of S and T, we have for each N € N
o<lim [T Sx; —ST,x||

TSx; = STx; | +1im . @—k,)|p- p]

joo

<k, lim.

Jox®

and so
lim

T.SX; —ST,x;[ =0

joo

whenever lim;__ Sx; =lim,__ T X; = Usince we have
i 1X; + (A=K )u
=k, u+(1-k,)u
=u.
Thus S and T, are compatible on D, foreachnand T, (D.) = D, =S(D}).
On the other hand by (1), for all x,y € D, ,we have for all j 2 N and n fixed

ITox=Toy] = ¢ -Ty]
<k me-Ty]

<[mx-Ty]
< a|Sx—Sy|+b maxﬂ['l’x — x|, [Ty - Sy||}

+C maxﬂ|Sx — Sy||, [T — Sx||[Ty - Sy||}

lim., T.x =k, lim

joo 'n’tj

1
+d max{[Sx— Syl [Tx — x| [Ty — Syl (ITy — 4] + [T~ Syl )}
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< s Sy] b T+ [Tx~Sxh 1y T, -+ T,y - S}
+c maxﬂ|Sx = Sy, [Tx =T, +[T,x = SX|, [Ty = T, y||+ Ty - Sy||}
- meaxfSx— Sy TX =T, x|+ T, x =S¥l Ty —T, -+ [T,y - Sy,

1

STy =Toyl [y = 96+ Tx =T, x|+ [T, x - syl

<a|Sx—Sy|+b max{(l— k) [Tx = p[|+ [T, x =S|, @—k,)[Ty - p[+|T,y - Sy||}
ema|x- Syl T |+ x- 5K, 1 k Ty - pl+ Ty - Sv)

+d maxﬂ|Sx = Sy|, @—k,)|[Tx = p[|+|T.x = S|, @—k)[Ty - p||+|T,y - S|
1
S@=tTy = pl+ [T,y =S|+ (0=, )[Tx — pf + [T - Syl )}

Hence for all j > n, we have
=T, ] < - Syl-+ bt -k, )T~ pl-« T, x - Sl (- Iy — pl-+ T,y — i}
+emax{[Sx—Sy|(a—k; )T~ pl +[[T,x—SxJ, @k [Ty — p| + T,y — Syl

..(10)
+d maxﬂ\Sx =Sy, @—k,)[Tx = p||+|T,x = S|, @—k,)|[Ty — p|+ [T,y — Sy,

1
@k Ty = pl+ Ty =S + =k, e~ pl+ T, x— sy

Thus, sincemjswej =1, from (10), for every N € N , we have
[T x=T,y| <lim e [T, x =T, y|

<1imj..[a)sx — Sy| + bmax{(L—k, )[Tx— p|+[T,x—SX|, L~ K, )Ty — p|+[T,y - Y|}
+emaxsx—Sy|(L—k; )Tx— pl +[T,x(x) 4 (LK [Ty — p| +[T,y - Syl

+d maxﬂ\Sx—Sy ,(@=Kk;)[Ty—p|+|T,y - Sy

(1=K )[Tx— p| +|T,x— Sx

1
@Ky = pl+ [Ty = ¢+ @k, )[Tx— pl +T,x - Sy}

which implies
[T x=T,y||=a|Sx—Sy|+b max{ﬂTnx - SX|, [T,y - SyH}

+cC maxﬂ\Sx = Sy|, [T, x = S| [T,y - SyH}
1
+ d max{|sx - Sy|, [T, x - Sx|. [T, y - Sy, EQ\Tn y - Sx|+ [T, x— sy}

for all X.y € D, therefore by Theorem 3.1 for every N € N, T, and S have a unique common fixed point X, in D;,

i.e., every Ne€ N, we have

F(T)NFES)={x}-

Now, the compactness of D, ensures that {x,} has a convergent subsequence {Xni} which converges to a point in
Dasince

X, =T, X, =K, Tx, +(1-k,)p ..(11)
and T is continuous, we have as | —> 00 in (3.2.3) z=Tz ie., z D, NF(T).
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Further, the continuity of S implies that
Sz=38(lim;, x,)=lim_ Sx =lim_ x, =z
i.e, Ze F(S), therefore, we have ze D, " F(T) " F(S)and so.
D,N"F(T)NF(S)=¢

This completes the proof.
As a consequence of our Theorem 3.2, we have the following result.

3.8 Corallary :
Let T and S be mapping of X into itself. Let T :0C —> CandX € F(T)F(S). Further, suppose that T and S
satisfy.

[Tx —Ty|| < a||Sx— Sy||+ b maxﬂ|Tx — X[ Ty = Sy||}

1
+ emax{{Sx— Syl [Tx— ¢ [Ty -8y} (Ty - 8¢ +[Tx— sy
forallx,yin D, =D, U{x}UE, where

E-= {q e X :Tx,,Sx, > q,{X,} < D}, a,b,c>0, a+b+c=1, a+c<~/a, S is linear, continuous on D, and T,S are
compatible in D, if Da is nonempty, compact, convex and S(Da)=Da, then D, "F(T) N F(S) = ¢.

This corollary is obtained by putting d = 0 in Theorem 3.2 and is the result of Sharma and Deshpande[16]d = 0.
Now, we obtain the following result due to Pathak, Cho and Kang[13] by putting ¢ = d=0 in Theorem 3.7.

3.9 Corallary :
Let T and S be mappings of X into itself. Let T :0C —> CandX € F(T) N F(S). Further, suppose that T and S

satisfy.
[Tx—Ty| < a|Sx - Sy|+ (1-a) maxﬂ|Tx - Sx|[Ty - Sy||}

forallx,yin D, =D, U{x}UE, where
E= {q e X :Tx,,Sx, = q.{X,} < D}, 0 <a<1, if Sis linear, continuous on D, and T,S are compatible in Dy, if Da
is nonempty, compact, convex and S(Da)=Da, then D, "F(T)NF(S) = ¢.

Now, by putting a =b = c¢ =0 in Theorem 3.2 we get the following result.

3.10 Corallary :
Let T and S be mapping of X into itself. Let T :0C — CandX € F(T)F(S) . Further, suppose that T and S
satisfy

1
Irx Ty <o maxsx— syl x-S 1y - syl 3 1 - 5]+ 7~ )

forallx,yin D, =D, u{x}u E , where
E={geX:Tx,,S%, = q,{X,}= D,}, 0<d <1, if S i linear, continuous on D. and T,S are compatible in D, if
Da is nonempty, compact, convex and S(Da)=Da, then D, "F(T) N F(S) # ¢.
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