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ABSTRACT 

The aim of this study is comparative examination of the estimation methods where can be 

employed to estimate Poisson regression model parameters. Occurrence number of any events 

that takes place within a specified time period as a result of conducted experiments can be 

expressed as count data. Poisson regression model is employed as an important data 

interpretation tool to analyze this kind of count data. Poisson regression models are regarded as 

a sub-branch of generalized linear models. 

The following tow  methods are used for parameters estimation: 1(Maximum Likelihood 

Estimation (MLE),2)  linear least squares(OLS). MATLAB packaged software is used for 

generation of simulation data and for parameter estimates. Poisson regression model 

parameters were estimated and models were generated by using of Monte Carlo simulation with 

sample sizes of 30, 60, 90 and 100 in accordance with Poisson distribution. 

Mean square error (MSE) and mean absolute percentage error (MAPE) criteria were used for 

comparison of estimated parameters in terms of their effectiveness 

Mean square error (MSE) and mean absolute percentage error (MAPE) criteria were used for 

comparison of estimated parameters in terms of their effectiveness. As a result of comparison, it 

was shown that MLE gives better results than other method OLS. 
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Poisson Distribution 

The Poisson distribution in discrete distributions is very useful in many statistical applications. 

is important. The Poisson distribution is random over a given time interval (or space). 

is the discrete probability distribution for counts of events occurring. Y specific range 

The average number of events per interval, if treated as the number of events in(λ) 

The first person to derive this function was a Frenchman named Simeon Poisson. Poisson 

found that the derivative of this distribution function was close to the binary binomial 

distribution, and in 1873published the distribution he derived in 

 

 

Here, 

e is the natural logarithm constant, e  2.718282 

λ: is the only parameter of the distribution and is always greater than zero (λ > 0)  

 

 

 

 

Properties of the Poisson Distribution 

 

A- The average or expected value of a certain event in a certain time period. 

the number of occurrences parameter distribution, as well as the arithmetic mean and 

shows that the variance is equal to each other 
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B- The histogram of the Poisson distribution is skewed to the right 

 

 

 

 

A special case where the arithmetic mean and variance parameters are equal to 10.5. 

in cases (2  Y =λ=µ=10.5) the poisson distribution approaches the normal distribution 

 

 

The probability of parameter value distribution starting from zero is low µ = 0.8 

The probability of zero is P(0)=0.449, P(0)=0.055 when µ=2.9, and P(0)=0.00003 when µ=10.5. 

This so the mass distribution tends to the normal distribution 
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Generalized Linear Models 

Thus far our focus has been on describing interactions or associations between two or three 

categorical variables mostly via single summary statistics and with significance testing. Models 

can handle more complicated situations and analyze the simultaneous effects of multiple 

variables, including mixtures of categorical and continuous variables. For example, the Breslow-

Day statistics only works for 2 × 2 × K tables, while log-linear models will allow us to test of 

homogeneous associations in I × J × K and higher-dimensional tables. We will focus on a special 

class of models known as the generalized linear models (GLIMs or GLMs in Agresti). 

The structural form of the model describes the patterns of interactions and associations. The 

model parameters provide measures of strength of associations. In models, the focus is on 

estimating the model parameters. The basic inference tools (e.g., point estimation, hypothesis 

testing, and confidence intervals) will be applied to these parameters. When discussing models, 

we will keep in mind 

start clear up some potential misunderstandings about terminology. The term general linear 

model (GLM) usually refers to conventional linear regression models for a continuous response 

variable given continuous and/or categorical predictors. It includes multiple linear regression, as 
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well as ANOVA and ANCOVA (with fixed effects only). The form 

is yi∼N(xiTβ,σ2), where xi contains known covariates and β contains the coefficients to be 

estimated. 

Assumptions: 

 The data Y1,Y2,...,Yn are independently distributed, i.e., cases are independent. 

 The dependent variable Yi does NOT need to be normally distributed, but it typically 

assumes a distribution from an exponential family (e.g. binomial, Poisson, multinomial, 

normal,...) 

 GLM does NOT assume a linear relationship between the dependent variable and the 

independent variables, but it does assume linear relationship between the transformed 

response in terms of the link function and the explanatory variables; e.g., for binary 

logistic regression logit(π)=β0+βX. 

 Independent (explanatory) variables can be even the power terms or some other nonlinear 

transformations of the original independent variables. 

 The homogeneity of variance does NOT need to be satisfied. In fact, it is not even 

possible in many cases given the model structure, and overdispersion (when the observed 

variance is larger than what the model assumes) maybe present. 

 Errors need to be independent but NOT normally distributed. 

 It uses maximum likelihood estimation (MLE) rather than ordinary least squares (OLS) to 

estimate the parameters, and thus relies on large-sample approximations. 

 Goodness-of-fit measures rely on sufficiently large samples, where a heuristic rule is that 

not more than 20% of the expected cells counts are less than 5 

Intuitive explanation of maximum likelihood estimation 

Estimation of Poisson regression parameters is based on the maximum likelihood estimation 

(MLE) method. It seeks to answer the question of what values the regression coefficients can 

take so that the maximum likelihood estimation data will yield results. The maximum likelihood 

estimation depends on a likelihood function. This function describes the probability of viewing 

the data as a function of the parameter set, the poisson regression uses the poisson distribution as 

the probability model, and the regression coefficients define the parameters that determine the 
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mean structure of the data. The purpose of the maximum likelihood method is to estimate the 

regression coefficients that maximize the likelihood function. This is possible by equating the 

first derivative of the likelihood equation to zero and solving for the regression coefficients. 

In the most practical situations, maximum likelihood estimation requires iterative processes. This 

adds extra complexity to these models. In particular, complex models with many parameters and 

small sample sizes prevent the process from converging. Ultimately, the results of the maximum 

likelihood estimation yield asymptotic standard errors for the regression coefficient. To discuss 

the maximum likelihood calculation for the Poisson regression, let (µi) be the mean of the ith 

outcome variable, with i = 1,2 ,...,n. The mean of the outcome variable; Since X1, X2, ..., Xk are 

assumed to be a function of the set of explanatory variables, the notation µ(Xi, β); used to 

associate the mean (µi) with Xi (the explanatory variable value for case i) and β (regression 

coefficients) 

 

 

Probability density function (pdf) is shown f(y|θ) with a set of θ parameters for the random 

variable y. This function defines the data generation process. This process forms the basis of the 

observed sample data; same 

 

It also provides a mathematical explanation of the data that the process will create. The joint 

density of the n independent variables and ideally distributed observations in this process is the 

product of the individual intensities. 

f(y1, ....... ,yn|)f(yi/)L(|y) 

This is the joint density likelihood function. It is a function defined by the unknown parameter 

vector θ. Here, y is used to denote the aggregation of sample data (Myung, 2002). Let's consider 

the following poisson regression model for estimation. 

 

(x,)e(xi ,)
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We just have to figure out the values of μ and σ that results in giving the maximum value of the 

above expression. 

 

 

Explaining the Simulation Experience 

 

Initially, the random error variable is transferred to the poisson distribution with the following 

parameter. 

according to the Poisson regression model.(i )  

Also, in accordance with the formula 

In the poisson regression model, the values of a dependent variable (Yi) are calculated: 
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 Parametr 

 

0.3553 0.2491 0.3462 0.6916 0.3423 0.3104 

N mothed  

 

 

 

 

 

 

 

 

 

 

 

30 MLE Parametre 0.55608

9 

0.35724

1 

0.69522

4 

0.34937

6 

0.31317

9 

0.00527

8 

 0.25403

6 

0.07681

5 

0.18300

0 

0.17506

8 

0.06299

1 

0.15277

6 

 3.00368

0 

1.69913

0 

0.52779

6 

9.17038

8 

4.32397

8 

6.60355

1 

ols Parametre 0.51098

0 

0.36219

1 

0.71824

2 

0.35895

6 

0.32170

8 

0.00500

2 

 0.29633

3 

0.09094

6 

0.21703

2 

0.18145 0.07300

5 

0.16390

9 

 4.01436

6 

2.41218

4 

0.66164

8 

5.64114

1 

5.89805

8 

6.61710

7 

60 MLE Parametre 0.58698

7 

0.35213

8 

0.68724

7 

0.35063

4 

0.31382

9 

-

0.00374 

 0.11282

6 

0.02823 0.13529

3 

0.13409

7 

0.01936 0.11685

1 

 0.67999

7 

2.57348

5 

0.47758

6 

2.88272 1.38608

2 

22.9717

2 

ols Parametre 0.57305

9 

0.35640

2 

0.69281 0.35409

5 

0.31352 -

0.00305 

 0.11730

7 

0.03124

2 

0.14167 0.13419

8 

0.02114

6 

0.11867

1 
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 1.13239

4 

0.97701

1 

0.47825

9 

2.74913

3 

1.08081

1 

25.6302

9 

90 MLE Parametre 0.68490

5 

0.34949

5 

0.59456

2 

0.35351

5 

0.31654 0.00050

5 

 0.09305

8 

0.02139

1 

0.13209

8 

0.13113

8 

0.01077

2 

0.10572

5 

 0.63080

5 

0.40004

3 

0.48983

2 

1.29505

9 

0.36834

7 

35.11 

ols Parametre 0.56859

3 

0.35241

2 

0.70135

5 

0.34705

8 

0.31992

5 

0.00116

7 

 0.09674

8 

0.02371

2 

0.13911

6 

0.13033

6 

0.01227

6 

0.10667

2 

 0.85634

4 

1.55741

3 

0.49272

5 

1.43252 0.43278

6 

87.1599 

100 MLE Parametre 0.60115

9 

0.34586

2 

0.66167

1 

0.39108

8 

0.40859

7 

0.00547 

 0.08861

8 

0.01783

6 

0.12776

3 

0.13162

4 

0.00931

2 

0.10206

9 

 0.43248

8 

0.30842

9 

0.49021

6 

1.22151 0.35380

4 

20.7065

6 

ols Parametre 0.59110

6 

0.34680

7 

0.65536

5 

0.32424 0.32976

4 

0.00474

9 
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 0.08982

5 

0.01948

9 

0.13139

9 

0.13075

8 

0.01009

2 

0.10225

5 

 0.41750

2 

0.32634

2 

0.49176

6 

1.28170

4 

0.37956

3 

45.6552 

 

 

Al – Nasir, A. M & Rashid, D. H (1988). Statistical Inference, Baghdad University, 

Higher Education Printing Press, Iraq, Baghdad. 

Atkins, D.C., Gallop, R.J., (2007). Rethinking How Family Researchers Model 

Infrequent Outcomes: A Tutorial On Count Regression And Zero-Inflated 

Models, Journal Of Family Psychology, Vol. 21, No. 4, Pp. 726 – 735. 

Batah, F. S (2010). A New Estimator By Generalized Modefied Jackknife Ridge 

Regression Estimator, Jornal Of Basrah Researches (Sciences), Vol. 37, No. 4, 

Pp. 138-149. 

Binjie, G.,Feng, P., (2013). Modified Gravitational Search Algorithm With Particle 

Memory Ability And Its Application, Jiangnan University, China. 

Brent, R.P. (1973). Algorithms For Minimization Without Derivatives, Englewood 

Cliffs, NJ: Prenticehall, Cambridge University Press, USE, P. 78. 

Cameron, A. C.,& Trivedi, P. K. (2013). Regression Analysis Of Count Data (Vol. 53). 

Cambridge University Press. 

Cameron, A.C., Trivedi, P .K., (1998). Essentials of Count Data Regression, Cambridge 

University Press, New York, USA 

Chan, Y.H. (2005). Log-Linear Models: Poisson Regression. Singapore Med. J. 46(8), 

Pp. 377– 386. 



International Journal of Psychosocial Rehabilitation, Vol. 24, Issue 02, 2020 

ISSN: 1475-7192 
 

9768 
 

De Jong, P., And Heller, G. Z. (2008). Generalized  Linear  Models  For  Insurance  

Data (Vol. 136). Cambridge: Cambridge UniversityPress. 

Dobson,J,A.,(1990), An Introduction generalized Linear Models, New South Wales, 

Journal Of Computational And Graphical Statistics Australia, Pp.30-33 

Fallah, N., Gu, H., Mohammad, K., Seyyedsalehi, S. A., Nourijelyani, K., & 

Eshraghian, M. R. (2009). Nonlinear Poisson regression using neural networks:  

a simulation study. Neural Computing and Applications, 18(8),939-943. 

 


	Assumptions:
	Intuitive explanation of maximum likelihood estimation

