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Continued Fractions and Conformal Mappings 
for Domains with Angle Points 

 

Pyotr N. Ivanshin1 
 

 Abstract. Here we construct the conformal mappings with the help of the continued fraction approximations. We 

first show that the method of [19] works for conformal mappings of the unit disk onto domains with acute external 

angles at the boundary. We give certain illustrative examples of these constructions. Next we outline the problem 

with domains which boudary possesses acute internal angles. Then we construct the method of rational root 

approximation in the right complex half-plane. First we construct the square root approximation and consider 

approximative properties of the mapping sequence in Theorem 1. Then we turn to the general case, namely, the 

continued fraction approximation of the rational root function in the complex right half-plane. These 

approximations converge to the algebraic root functions N z , N∈N , C∈z , 0>Rez . This is proved in 

Theorem 2 of the aricle. Thus we prove convergence of this method and construct conformal approximate mappings 

of the unit disk onto domains with angles and thin domains. We estimate the convergence rate of the approximation 

sequences. Note that the closer the point is to zero or infinity and the lower is the ratio k/N the worse is the 

approximation. Also we give the examples that illustrate the conformal mapping construction. 

 Keywords--- Conformal mapping, approximation, continued fraction, complex variables, rational function. 

 MSC. 30C30, 30C20. 

I. INTRODUCTION 
 This article extends and develops paper [19]. There we presented the reparametrization method of conformal 

mapping of the unit disk onto the given simply connected domain with a smooth boundary. This method is based on 

reduction of Fredholm integral equation to a sufficiently large linear equation system and on the boundary curve 

reparametrization. The solution possesses polynomial form that can be easily analyzed. 

The method can be considered as one of the rapidly converging methods according to classification of [14]. The 

computation cost is actually similar to TheodorsenвЂ™s method or Fornberg method [10]. Let us compare the 

reparametrization method of [19] with the other conformal mapping methods. 

We do not consider the auxiliary mapping of the unit disk into subdomain of the given domain D  as in the set 

of osculation methods [2]. The method of [19] does not require a sufficiently good initial approximation of the 

conformal mapping as the graphical methods such as that of [11]. The method does not apply any auxiliary 

constructions at the domain interior (domain triangulation [8], circle packing [15], domain decompositions, such as 

1 Department of Mechanics and Mathematics, Kazan Federal University. E-mail:pivanshi@yandex.ru  
 

Received: 02 Mar 2019 | Revised: 25 Mar 2019 | Accepted: 23 Apr 2019                  712 

                                                       



International Journal of Psychosocial Rehabilitation, Vol. 23, Issue 03, 2019 
ISSN: 1475-7192 

meshes of [24]). We do not need any iterative conformal mappings as in the zipper algorithm or the Schwartz-

Christoffel mapping [7, 13]. We construct our polynomial solution differently to the Fornberg polynomial method 

[9] that involves consequent approximations through suitable point choice at the domain boundary. Also we do not 

apply the solutions of auxiliary boundary value problems (the conjugate function method, Wegmann method [22, 

23]). Finally, the advantages of the method presented in [19] are the following: 1) it is devoid of auxiliary 

constructions, 2) it brings us to the mapping function in a polynomial form. The mapping function is a Taylor 

polynomial for the unit disk or a Laurent polynomial for the annulus in the case of multiconnected domains [1], [18]. 

Let us recall the basic construction steps of the reparametrization method [19]. 

Consider a finite simply connected domain D  bounded by the smooth curve 

)(2=(0)]},[0,2),(={= ππ zzttzzL ∈ . We trace the domain D  counterclockwise along L  as the 

parameter t  increases. We only deal with the cases in which the boundary L  representation is as follows:  
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 Note that any smooth boundary may be approximated by a Fourier polynomial of this type. 

If Fourier polynomial representation (1) of the curve L  possesses no summands with the negative degrees of 
ite  then the function that maps the unit disk to the domain D  is immediately polynomial:  
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Assume now that representation (1) contains nonzero coefficients lc− , N∈l . Then it is possible to construct an 

approximate conformal mapping under reparametrization of (1) [16] leading to the coefficients lc− , N∈l , 

elimination. 

In order to find this reparametrization )(θt , ][0,2πθ ∈ , we first construct the inverse function 

Ltzzzt ∈)(=|))((arg=)( ζθ . Here )(zζ  is the analytic function that gives the conformal mapping of D  onto the 

unit disk so that 0=(0)ζ . Let us denote by )(tq  the difference )(arg)( tzt −θ . The necessary condition for the 

function 
z
z)(ln ζ  to be analytic in D  is just as in [16] the equation  
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We consider the factor )( iti ee −τ  in the expression of )()( tzz −τ  in order to separate the improper VP 
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integral in the last integral equation. Finally, the function )(tq  is the solution of the Fredholm integral equation of 

the second kind (2). Note that the integral kernel ]
)()(

)([Im1=)))()((arg(1
tzz

ztzz
−
′∂

∂
−∂

τ
τ

πτ
τ

π
 coincides with 

the operator ),(1 tK τ  of [21]. We solve this integral equation reducing it to the finite linear equation system 

without converging iterations proposed in [21]. 

This integral equation has the set of solutions ntnttq nn
p

sincos=)(
1=

0 βαα ++∑
∞

 that differ by an arbitrary 

summand 0α . Equation (2) is uniquely resolvable if we set the value 0=)(
2
1 2

0

ττ
π

π

dq∫  [19], or fix the boundary 

image 00 =)( qtq  [21]. Indeed, the number 1 is the simple eigenvalue of ),(1 tK τ  with the eigenfunction 10 ≡f  

[21] and corresponds to rotation of the unit disk. So we search only for the coefficients nn βα , , 1≥n . The operator 

ItK −),(1 τ  is invertible in the subspace of ][0,22 πL  spanned by ntnt sin,cos , 1≥n . 

We search for the approximate function )(tq  in the form ntnttq nn

M

p
sincos=)(

1=
βα +∑ , N∈M . 

Reduce equation (2) to the uniquely resolvable finite linear system over the Fourier coefficients nn βα , , 1≥n , 

of the function )(tq . 
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on the right-hand side of the equation system consist of the corresponding Fourier coefficients obtained by the 

following technique: We separate the summand 
2

cot t−τ
 in the kernal, apply Hilbert formula and find Fourier 
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coefficients of the integral with the remained continuous kernel as usual. 

The block matrices of size M   

 BBBAABAA ,,,  

consist of the elements  
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here lnδ  is the Kronecker delta function. Also  
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The cost of the linear system solution method is )( 2NO , where N  is the degree of the Fourier polynomial 

approximating )(tq . Now )(=))((=)( θθ ieZtztz , here )()(arg=)( tqtzt +θ , and the unit disk is mapped 

to the domain bounded by the given smooth boundary )(tz  with the help of the Cauchy integral formula. So we 

construct an approximate polynomial conformal mapping. Similar method was also applied for construction of the 

annulus conformal mapping onto an arbitrary multiconnected domain with the smooth boundary in [1, 17]. 

Note that we can reconstruct )(tq′  intead of )(tq  in the case of smooth boundary [19]. So this method can also 

be considered as one of the methods using the derivatives [14]. 

The drawback of the reparametrization method is that it does not cover the conformal mappings of the unit disk 

onto domains with non-smooth boundaries. For instance, in the case of a domain with the angle φ  for 0= tt  

equation (2) turns into  

 +
∂

−∂
∫ τ

τ
ττφ

π

dtzzqtq )))()((arg()(=)(
2

0

 

 τ
τ
ττ

π

dtzzz
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|])()(|ln[|)(|ln
2

0

 (3) 

 at the point 0t . In order to overcome this difficulty we apply the additional conformal mapping which 

"straightens" the bondary curve at the corresponding point. Then we apply the reparamentrization method to the new 

domain with the smooth boundary and again apply the conformal mapping that "bends" the boundary back to the 

initial one. Our aim is to represent this final mapping as the polynomial fraction. 

In the article we apply the modification of the conformal mapping construction of [19] both for domains with 

boundary angles and for slender regions. We present the mapping as a polynomial fraction. We first show that the 

method of [19] is applicable to domains with acute external angles. Then we present the polynomial fraction 

construction for the internal angle equal to /2π  and conformally map the unit disk to the domain with such an 

angle. After that we construct the polynomial fraction for the angles Nk /π , N∈Nk < . Finally we show that this 

approach is valid for the conformal mapping of the unit disk to the slender region. 

II. METHODS 
A. The case of an internal angle greater than π  

The method of [19] allows us to solve the conformal mapping construction problem for any contour with the 

boundary curve forming internal angles greater than π . This can be illustrated by certain examples. 
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Let the angle point correspond to the value 0  of the parameter, the internal angle be equal to 1>>,2 απα . 

Then the representation of the boundary curve equation in the neighborhood of the angle point has the form 

Ketz it α)(1=)( − , R∈K . The difference between the Fourier series partial sum )(xSn  and the function 

)(xf  itself is expressesed by the formula 

(1))(sin))(2)()((
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Hence for all 1>α  the difference between the values of the Fourier series partial sum )(xSn  and the function 

)(tz  itself can be made arbitrarily small for a sufficiently large n . That is, we have the convergence of the Fourier 

series at the angle point, regardless of the angle. This allows us to apply the conformal mapping construction method 

of [19]. 

Example 1. Consider the piecewise circular contour (two semicircles and one circle quarter) with the external 

angle /2π  (Fig.1). First we approximate the boundary with a Fourier polynomial of degree 10 . Then we construct 

the approximating polynomial of degree 50 .  
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Figure  1: The approximation of the contour with the external angle /2π  and the polar net image. 

  Example 2. The three-semicircle contour with the external angle 0  (Fig.2). Again we first approximate the 

boundary with a Fourier polynomial of degree 10 . We then construct the approximating polynomial of degree 50 . 

  

Figure  2: The approximation of the contour with the external angle 0  and a part of the polar net image 
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 The similar example for the doubly connected domain with rectangular inner boundary can be found in [17]. 

B. The construction scheme for the case of an internal angle less than π  

It is computationally difficult to apply the conformal mapping construction of [19] for a domain whose boundary 

forms an acute internal angle. Then the mapping polynomial converges slowly and the resulting conformal mapping 

angle point does not look like an angle at all (sort of a bubble). 

Consider a curve whose behavior at an angle point is similar to Keit α)(1− , R∈K , with (0,1)∈α  in a 

neighborhood of 0=t . Then again by Dini criterion ( [25], Chapter 2, Section 6) we have a singularity of type 
1−αt  at 0=t  and the Fourier series slowly converges at 0=t . In order to esimate ),,( αεnF , defined by 

relation (4), we consider the following inequalities: αα

π
)(/2)(sin

tt ≥ , 
π
n

t
nt 2)(sin
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2

(cos))(
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(cos απα
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2
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2
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αnn
nF  for 

n2
= πε . Hence 

enn
nF 2)

ln
1,

2
,( →
π

 as ∞→n . So, for the singular point 0=t , the Fourier series rate of convergence to the 

generating function )(tz  is the less the closer α  is to 0 . Thus, the method from [19] is difficult to apply, since 

even the Fourier series poorly approximate a curve with such an angle point. 

Let the domain boundary be angled and the angle be equal to Nk /π , 2,3,=N , 1},{1,2, −∈ Nk  . 

The main idea of the mapping construction is to first put the angle point at 0 , make the domain smooth with the 

mapping kNz / , construct the conformal mapping onto this smooth domain and then apply the fraction polynomial 

approximation of the inverse mapping N kz . Note that the domain should completely lie in the right half-plane. In 

the other case we should apply fraction linear mapping in order to put the domain into the angle. 

The continued fraction converges to x  at 0=x  faster than the Taylor expansion of the function 1+−
a

ax
 

into degrees of )( ax −  to the function 1+−
a

ax
 itself at 0=x  [5]. The most thorough and refined method 

here is the Padé rational function approximation of the algebraic function [3, 4]. Note that these approximations are 

optimal in the set of fraction polynomials though their construction requires application of Euclidean algorythm and 

additional investigation of the holomorphness domain D . 

The main result here is that the recursively constructed relations converge to the continued fraction 

approximating any rational root N z , N∈N . The constructed sequence is clearly not Padé one. But the 

construction itself is fairly simple, does not possess nonunique solutions and provides convergence to the root 
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function at the complex right half-plane. Similar results can be found in [5]. Also the author is sure that this result 

can be proved along the lines of [12]. Again the proof should apply induction and we need to consider the roots of 

the polynomials instead of the mapping itself. Note also that the fractional polynomial mappings can be applied, for 

instance, to exact solution of the elasticity theory problems [20]. 

III. RESULTS AND DISCUSSION 
A. The square root approximation 

First consider the basic problem of the square root fraction polynomial representation. It is well-known that 

1
11=
+
−

+
z

zz . This gives rise to the following recursive procedure: 
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The induction step then is as follows: 

1. The nominator similar to that of the induction base is 

0>|)(|)]([Re)]([Im][Im)]([Re][Re][Re 2
1111 zfzfzfzzfzz nnnn −−−− ++++  by conjecture. 

2. Similarly the sign of )]([Im zfn  coincides with the sign of ++− ][Im][Im 1 zfn  
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)]([Im][Re)]([Re][Im 11 zfzzfz nn −− −+ . The last two summands are of the same sign as ][Im z  by 

conjecture. 

3. Consider 2
1111
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respective summands of the nominator and denominator meet the desired relation so the fraction itself is less in 

modulus than 
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z
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.  

Statement 1 There are no points at the right complex half-plane at which the derivative of )(zfn  vanishes.  
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 by the induction assumption and item 1 of Lemma 1. 

Also since 0>)]([1Re 1 zfn−+  for z  from the right half plane the function )(zfn  does not have poles in this 

set.  
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Proof. First note that 1|<
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This completes the proof. 

Assume now that we have a convex domain with acute internal angles and we need to construct the conformal 

mapping of the unit disk onto this domain. The main construction steps are as follows: we make the domain as round 

as possible with square mappings. If the resulting domain does not overlap itself then we construct the 

approximating polynomial according to the method of [19]. Finally we construct the square root approximations of 

the resulting image inverse to the squares of the first step. 

Received: 02 Mar 2019 | Revised: 25 Mar 2019 | Accepted: 23 Apr 2019                  722 



International Journal of Psychosocial Rehabilitation, Vol. 23, Issue 03, 2019 
ISSN: 1475-7192 

Example 3. Let us construct an approximate conformal map of the unit disk onto the contour with the internal 

angle /2π . Here we have the 11th iteration of the square root approximation and degree 50 polynomial for the 

initial domain (Fig.3). 

  

Figure  3: Contour with the internal angle equal to /2π  

B. The case of N
k

z  

 Consider a natural number N∈N . The recursive representation of the N -th root then takes the following 

form:  
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Also at the same time we have 

Received: 02 Mar 2019 | Revised: 25 Mar 2019 | Accepted: 23 Apr 2019                  723 



International Journal of Psychosocial Rehabilitation, Vol. 23, Issue 03, 2019 
ISSN: 1475-7192 

1
= 12

1
1

++++

−
+ −

−
−

NNN
kN

N
k

N
k

N
k

zzz

zzzz


 

Then we express the right-hand side of the first relation only through Nz
1

. Certain statements similar to that of 

Section 4 hold and we have the convergence of these fractions to the relative function degrees at the complex right 
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Again as in the square root case we have  
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we have the convergent sequence for any z , 0>][Re z . 

Lemma 2 For z  such that 0>][Re z  and any 2,3,=N , we have  
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Proof. In order to prove the relation consider z  such that 0>][Re z , 0][Im ≥z . Consider 
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 that does not possess poles in the right half-plane since the 
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Assume first that N  is even. Consider the real part of the nominator  
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Similarly for the imaginary part we have  
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In order to compare the absolute values of the nominator and denominator we project their components onto the 

same line /4= πφ  since the absolute value of the negative deformation /4))(sin/4)(cos(1/2 ππ +− Nr  is 

maximal in this direction. For any 1,1,= −Nk  , the absolute value of N
k

z  projection onto this line is 2  

times less than the number N
k

z  real and imaginary part sum. 

Then for any 1/2][,1,= −Nk  , we have  
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The equality happens only for 0=z . 

Let N  be an odd number. Then similarly to the even case we project our sums onto the line 
N
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gather N
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The lemma is proved.  

 

The convergence rate for Nkz /  can be estimated by some multiple of  
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So the more acute the angle and the closer z  is to 0  the worse is the approximation convergence. 

This completes the proof of the theorem.  

 

We now construct the following mappings exactly as in Example 3. 

Example 4. The contour (two lines and the circular sector) with the angle /3π . We first approximate the 

unfolded domain by the method of [19] and then fold the result with the fractional polynomial mapping. We apply 

the recursive formula  
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The unfolded domain was approximated by the polynomial of degree 50 . We next apply the 6th fraction 

iteration to fold the domain back to the angled one (Fig.4). 
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Figure  4: Sixth approximation of the contour with the internal angle equal to /3π  and a part of the polar net image 

Example 5. Similar contour (two lines and the circular sector) with the angle /32π . We again approximate the 

unfolded domain by the method of [19] and then fold the result with the fractional polynomial mapping. Here the 

main formula is simply  

 
)(

=)(
zg

zzh
n

n  

for )(zgn  of Example 4. The unfolded domain was approximated by the polynomial of degree 50 . We next 

apply the 4th fraction iteration to fold the domain back to the angled one (Fig.5).  

  

Figure  5: Fourth approximation of the contour with the internal angle equal to /32π  and a part of the polar net 

image 

These examples show us that the more acute is the internal angle the harder it is to approximate it. 
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C. The case of thin domains 

Consider the case of slender regions. The second problem for us is the case of relatively thin domains (e.g. 

ellipse with two significantly different axes). Consider the integral equation of [19] kernel behavior for τ  close to 

the point t  of the largest possible curvature )(tκ : (1)/2|)(|)(=)
)()(
)()((arctg otzt

txx
tyy

d
d

+′
−
− κ

τ
τ

τ
. Then the 

diagonal elements of the relative linear equation system matrix are close to )(tκ  and are also large. Thus, the 

greater the curvature )(tκ  of the curve in t , the worse the convergence of the polynomial solution. 

The authors of [6] numerically solve the singular integral equation in order to find the conformal mappings from 

elliptic to slender regions. The method of recursive fractions is also applicable to the conformal mapping 

construction of a disk onto a thin domain. The main problem here is the so-called point crowding phenomenon. Here 

we achieve the similar results (domain sides ratio 1/4 ) with our method as a natural application. We first make the 

domain less slender with the help of the square mapping 2)( az − , here the point a  lies outside the domain and 

close to its boundary point of maximal curvature. We cannot take this point at the boundary itself since then we 

achieve the domain that cannot be immediately inserted into the right half-plane at the neighbourhood of a . 

Secondly we apply the approximate conformal mapping construction algorithm. Finally we apply the square root 

approximation in order to return to the domain with the given boundary. 

Now, if a domain lies between two sides of the right angle closely to the vertex then we consider the mapping of 

the disk onto the squared domain and the square root approximation of the angle. 

Example 6. Consider the ellipse of semiaxes 1 and 1/4 : 1=16 22 yx + . Let us construct an approximate 

conformal mapping of the unit disk onto this ellipse. 

The initial method of [19] provides us with the following result for the polynomial of degree 1200  (Fig.6).  

 

Figure  6: The ellipse polynomial approximation 

Here we consider the 20th square root iterations and 1000 degree polynomial (Fig.7). Similar picture under only 

polynomial approximation due to the point crowding phenomenon happens for polynomial of degree 410 . 
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Figure  7: The ellipse fraction polynomial approximation 

IV. SUMMARY 
 We first showed that the method of [19] works for conformal mappings of the unit disk onto domains with acute 

external angles at the boundary. Next we outlined the problem with domains which boudary possesses acute internal 

angles. Then we constructed a method of rational root approximation in the right complex half-plane. Also we 

proved convergence of this method and constructed conformal approximate mappings of the unit disk onto domains 

with angles and thin domains. All the constructions of the article are supported by examples. 

V. CONCLUSION 
 Our approach of continuous fractions application to conformal mapping constructions shows good convergence 

and may be appied, for example to certain problems of mathematical physics, particulary, to elasticity theory 

problems. 
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