
 
 

 
 

On Sum of Two Squares in One or Two Ways 
1V.Sujatha,2M.Gangadhar Reddy,3M.V Sesha Reddy 

Abstract:  

The question of expressing a natural number as sum of two squares in one or two different ways has been of significant 

importance in mathematics. This question has affirmatively been answered by several prominent mathematicians like 

Euler, Lagrange, Gauss, Dedekind and many more. In this paper, we will provide nice and elementary techniques by 

which we can determine the numbers which are expressible as sum of two squares in one or two different ways using the 

concept of factorization of a number.  
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1. Introduction: 

 The idea of writing a given natural number as sum of two squares has been conceived for more than two millennia. 

During the time when Pythagoras was researching with his associates called Pythagoreans, they found few square numbers 

which can be written as sum of two squares. For example, 32 + 42 = 52 , 52 + 122 = 132 , 82 + 152 = 172 , . . . 

Geometrically such three numbers forms side lengths of a particular right triangle and they are called Pythagorean Triples. 

In general, Pythagorean Triple consists of three natural numbers a, b, c such that a 2 + b 2 = c 2 . Considering 02 = 0 as a 

square number, we notice that c 2 = c 2 + 02 . Thus, it follows that all square numbers can be written as sum of two 

squares in one way, in which one of the square is 0. But there are some non - square natural numbers, which can be written 

as sum of two squares. For example, 10 is one of such a number, since 10 = 12 + 32 . We know that a natural number n is 

expressible as sum of two squares, if and only if the prime factorization of n contains even powers of primes of the form 

4k + 3. This is both necessary and sufficient condition for expressing a given natural number as sum of two squares. In 

view of this theorem, it follows that 0, 1, 2, 4, 5, 8, 9, 10, 13, 16, 17, 18, 20, 25, 26, 29, 32, ... are the numbers which can 

be expressible as sum of two squares. 

During 17th Century CE, Albert Girard and Fermat mentioned that any prime of the form 4k + 1 is expressible as sum of 

two squares in a unique way, which is now called as Fermat’s Christmas Theorem. In this paper, we shall provide some 

elementary techniques, by which we can express a given natural number as sum of two squares in exactly one way or in 

two different ways. 

2. Theorem 1: 

 If a, b, c, d are four numbers then 

 

Proof:  

(ac - bd) 2 + (ad + bc) 2 = a 2 c 2 + b 2 d 2 + a 2 d 2 + b 2 c 2 = (a 2 + b 2 ) × (c 2 + d 2 ) proving (1). (2) can be proved 

similarly. 

These two basic identities are called Diophantus Identities or Brahmagupta - Fibonacci Identities. 

3. Theorem 2:  

If N is a natural number and if N = (p 2 + q 2 ) × (r 2 + s 2 ) then there exists four numbers a, b, c, d such that N = a 2 + 

b 2 = c 2 + d 2 (3) 

Proof:  

If N = (p 2 + q 2 ) × (r 2 + s 2 ) then we choose a = pr - qs, b = ps + qr, c = pr + qs, d = ps - qr so that a 2 + b 2 = (pr - qs) 

2 + (ps + qr) 2 = (p 2 + q 2 ) × (r 2 + s 2 ) = N and c 2 + d 2 = (pr + qs) 2 + (ps - qr) 2 = (p 2 + q 2 ) × (r 2 + s 2 ) = N 

proving (3). This completes the proof. 
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3.1 Corollary 1:  

If either p = 0 or q = 0 in N = (p 2 + q 2 ) × (r 2 + s 2 ) then N can be written as sum of two squares in only one way. 

Proof:  

From (1), we get N = (p 2 + q 2 ) × (r 2 + s 2 ) = (pr - qs) 2 + (ps + qr) 2 (4) From (2), we get N = (p 2 + q 2 ) × (r 2 + s 2 

) = (ps - qr) 2 + (pr + qs) 2 (5) If p = 0, then from (4), we get N = (qr) 2 + (qs) 2 and from (5), we get N = (qr) 2 + (qs) 2 

If q = 0, then from (4), we get N = (pr) 2 + (ps) 2 and from (5), we get N = (pr) 2 + (ps) 2 Hence in either case, we notice 

that N can be written as sum of two squares in only one way. This completes the proof. 

3.2 Corollary 2:  

If p = q in N = (p 2 + q 2 ) × (r 2 + s 2 ) then N can be written as sum of two squares in only one way. 

Proof:  

Assuming p = q, from (4) we obtain N = (p 2 + p 2 ) × (r 2 + s 2 ) = (pr - ps) 2 + (ps + pr) 2 and from (5) we obtain N = 

(p 2 + p 2 ) × (r 2 + s 2 ) = (ps - pr) 2 + (pr + ps) 2 = (pr - ps) 2 + (ps + pr) 2 . Thus N can be written as sum of two squares 

in only one way. This completes the proof. 

4. Theorem 3:  

If N is a natural number and if N = a 2 + b 2 = c 2 + d 2 then there exists four integers p, q, r, s such that N = (p 2 + q 2 ) 

× (r 2 + s 2 ) (6) 

Proof:  

Since N = a 2 + b 2 = c 2 + d 2 , considering mod 4 operation, we note that if a and b are even then both c and d are also 

even. Similarly if a and b are odd, then both c and d are also odd. If one of a or b is odd, then one of c or d must be odd. 

Let us assume that a be odd and c is odd such that a < c. Let (x, y) represent the greatest common divisor of x and y. 

Let p = ((c + a)/2, (b + d)/2) and q = ((c - a)/2, (b - d)/2). Then there exists integers r and s such that c + a = 2pr, b + d = 

2ps, c - a = 2qs, b - d = 2qr. From these equations, we have 4(p 2 + q 2 ) × (r 2 + s 2 ) = 4p 2 r 2 + 4p 2 s 2 + 4q 2 r 2 + 

4q 2 s 2 = (c + a) 2 + (b + d) 2 + (b - d) 2 + (c - a) 2 = 2(c 2 + a 2 ) + 2(b 2 + d 2 ) = 2(a 2 + b 2 ) + 2(c 2 + d 2 ) = 2N + 

2N = 4N. 

Hence N = (p 2 + q 2 ) × (r 2 + s 2 ) proving (6). This completes the proof. 

5. Theorem 4:  

If N = p1 × p2 where both p1 and p2 are primes of the form 4k + 1, for some k, then N can be written as sum of two 

squares. In particular if p1 = p2 then we obtain a Pythagorean Triple and if p1 and p2 are distinct, then N can be expressed 

as sum of two squares in two different ways. 

Proof:  

By Fermat’s Christmas Theorem we know that any prime of the form 4k + 1 is expressible as sum of two squares in only 

one way. Hence if p1 and p2 are primes of the form 4k + 1, for some k, then we can write p1 = p 2 + q 2 and p2 = r 2 + s 

2 for some integers p, q, r, s. Then we can write N = p1 × p2 = (p 2 + q 2 ) × (r 2 + s 2 ). By (3) of Theorem 2, there exists 

integers a, b, c, d such that N = a 2 + b 2 = c 2 + d 2 , where a = pr - qs, b = ps + qr, c = pr + qs, d = ps - qr. Thus, N can 

be expressed as sum of two squares. From (4) and (5) we obtain N = p1 × p2 = (p 2 + q 2 ) × (r 2 + s 2 ) = (pr - qs) 2 + 

(ps + qr) 2 and N = p1 × p2 = (p 2 + q 2 ) × (r 2 + s 2 ) = (ps - qr) 2 + (pr + qs) 2 . If p1 = p2 then let p = r and q = s. 

Hence N = (p 2 - q 2 ) 2 + (2pq) 2 = (p 2 + q 2 ) 2 . Hence (p 2 - q 2 , 2pq, p 2 + q 2 ) forms a Pythagorean Triple. If p1 

and p2 are distinct, then from N = p1 × p2 = (p 2 + q 2 ) × (r 2 + s 2 ) the values a = pr - qs, c = pr + qs will be distinct as 

well as b = ps + qr, d = ps - qr will be distinct. Hence N = a 2 + b 2 = c 2 + d 2 would be two distinct ways of writing N. 

Thus, in this case, N can be expressed as sum of two squares in two different ways. This completes the proof. 

6. Theorem 5: 

 If N can be expressed as sum of two squares in two different ways, then 2N is also expressible as sum of two squares in 

two different ways. 

Proof:  
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Let N = a 2 + b 2 = c 2 + d 2 for some four numbers a, b, c, d. Now we consider the basic identity from algebra namely, 

(a + b) 2 + (a - b) 2 = 2(a 2 + b 2 ) and (c + d) 2 + (c - d) 2 = 2(c 2 + d 2 ). Therefore, from N = a 2 + b 2 = c 2 + d 2 we 

obtain 2N = (a + b) 2 + (a - b) 2 = (c + d) 2 + (c - d) 2 . Thus, 2N is also expressible as sum of two squares. This completes 

the proof. 

6.1 Corollary 3:  

There exists infinitely many natural numbers which are sum of two squares in two different ways. 

Proof: 

From theorem 5, we know that if N is expressible as sum of two squares in two different ways, then 2N can also be done 

so. Similarly, by the same argument, we notice that 2(2N) = 4N, 2(4N) = 8N, 2(8N) = 16N, … are also expressible as sum 

of two squares in two different ways. Therefore, if N is expressible as sum of two squares in two different ways, then the 

numbers of the form 2kN for any natural number k, can also be expressed as sum of two squares in two different ways. 

This completes the proof. 

Conclusion:  

The primary objective of this paper is to provide elementary methods by which we can decide if a given natural number 

is expressible as sum of two squares in one or two different ways. This problem as mentioned in the Introduction has 

already been done by various important mathematicians. The Indian mathematical genius Srinivasa Ramanujan has also 

considered the generalized version of this problem. These ideas have blossomed in to new concept known as Quadratic 

Forms, in which we can try to express a given natural number N as linear combination of squares with particular 

coefficients. 

In this paper, in Theorem 2, we have shown that if a natural number N is product of two numbers each of which are sum 

of two squares, then their product is also a number which can be expressed as sum of two squares either in one or two 

different ways. In the two corollaries presented after Theorem 2, we have provided the cases when a number can be 

expressed as sum of two squares in just one way. In Theorem 3, we established the converse part of the fact of Theorem 

2. In particular, the proof of Theorem 3 provided in this paper will be one of the easiest methods to do so. 

In Theorem 4, we have given explicit condition in terms of prime factorization of a given natural number N and have 

proved in such case, the number N is always expressible as sum of two squares in either one way or two ways depending 

upon the prime factors of N. Finally, in Theorem 5 and the subsequent Corollary we established the fact that there are 

infinitely many natural numbers which are sum of two squares in two different ways. Although these results are mostly 

known in literature, we hope that the fresh and elementary methods which we have provided in this paper would be helpful 

especially for young researchers and budding teachers to explore more in this fertile area of research. 
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