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ABSTRACT: 

Investigations are conducted using molecular dynamics (MD) simulations of ions (K+, Na+, Ca2+, and Cl−) in aqueous 

solutions. We use the SPC/E model to explain water. Using MD simulations, a stochastic coarse-grained description of 

ion behavior is presented and parameterized. It describes the position, acceleration, and velocity of the ions and is 

presented as a system of coupled stochastic and ordinary differential equations. A description in between Brownian 

dynamics (BD) models and all-atom MD simulations is offered by the stochastic coarse-grained model. It is applied to 

the development of a multiscale technique that employs (less detailed) BD simulations in the remaining computational 

region and all-atom MD simulations in other areas. 

 Key words: Brownian dynamics, molecular dynamics, and multiscale modeling 

1 Introduction: 

 Molecular dynamics (MD) simulations of ions in aqueous solutions are limited to modelling processes in relatively small 

domains containing (only) several thousands of water molecules [1, 2]. Ions play important physiological functions in 

living cells which typically consist of 1010–1012 water molecules. In particular, processes which include transport of 

ions between different parts of a cell cannot be simulated using standard all-atom MD approaches. Coarser models are 

instead used in applications. Examples include Brownian dynamics (BD) simulations [3] and mean-field Poisson-Nernst-

Planck equations [4]. In BD methods, individual trajectories of ions are described using 

 

where X = [X1, X2, X3] is the position of the ion, D is its diffusion constant and Wi , i = 1, 2, 3, are three independent 

Wiener processes [5]. BD description (1.1) does not explicitly include solvent molecules in the simulation. Moreover, in 

applications, equation (1.1) can be discretized using a (nanosecond) time step which is much larger than the typical time 

step of MD simulations (femtosecond) [6]. This makes BD less computationally intensive than the corresponding MD 

simulations. 

Longer time steps of BD simulations enable efficient simulations of ion transport between different parts of the cell, but 

they limit the level of detail which can be incorporated into the model. For example, intracellular calcium is regulated by 

the release of Ca2+ ions from the endoplasmic reticulum via inisitol-4,5-triphosphate receptor (IP3R) channels. BD 

models in the literature use equation (1.1) to describe trajectories of calcium ions [3, 7]. The conformational changes 

between the open and closed states of IP3R channels are controlled by the binding of Ca2+ to activating and inhibitory 

binding sites. BD models postulate that binding of an ion occurs with some probability whenever the distance between 

the ion and an empty site is less than the specific distance, the so called reaction radius [8, 9]. Although details of the 

binding process are known [10, 11], they cannot be incorporated into coarse BD models of calcium dynamics, because 

equation (1.1) does not correctly describe short time behaviour of ion dynamics. 

The calcium induced calcium release through IP3R channels is an example of a multiscale dynamical problem where MD 

simulations are important only in certain parts of the computational domain (close to an IP3R channel), whilst in the 

remainder of the domain a coarser, less detailed, BD method could be used (to describe trajectories of ions). Such 

multiscale problems cannot be simulated using MD methods, but there is potential to design multiscale computational 
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methods which compute the desired information with an MD-level of resolution by using MD and BD models in different 

parts of the computational domain [12]. 

In [12], three relatively simple and analytically tractable MD models are studied (describing heat bath molecules as point 

particles) with the aim of developing and analyzing multiscale methods which use MD simulations in parts of the 

computational domain and less detailed BD simulations in the remainder of the domain. In this follow up paper, the same 

question is investigated in allatom MD simulations which use the SPC/E model of water molecules. In order to couple 

MD and BD simulations, we need to first show that the MD model is in a suitable limit described by a stochastic model 

which does not explicitly take into account heat bath (water) molecules. In [12], this coarser description was given in 

terms of Langevin dynamics. Considering all-atom MD simulations, the coarser stochastic model of an ion is more 

complicated than Langevin dynamics. In this paper, it will be given by 

 

where X ≡ [X1, X2, X3] is the position of the ion, V ≡ [V1, V2, V3] is its velocity, U ≡ [U1, U2, U3] is its acceleration, 

Z ≡ [Z1, Z2, Z3] is an auxiliary variable, dW ≡ [dW1, dW2, dW3] is white noise and ηj , j = 1, 2, 3, 4, are parameters. 

These parameters will be chosen according to all-atom MD simulations as discussed in Section 3. In Section 4, we show 

that (1.2)–(1.5) provides a good approximation of ion behaviour. In Section 5, we further analyse the system (1.2)–(1.5) 

and show how parameters ηj , j = 1, 2, 3, 4, can be connected with diffusion constant D used in the BD model (1.1). 

 

The coarse-grained model (1.2)–(1.5) is used as an intermediate model between the all-atom MD model and BD 

description (1.1). In Section 5, we show how it can be coupled with the BD model which uses a much larger time step 

than the MD model. In Section 6, the coarse-grained model (1.2)–(1.5) is coupled with all-atom MD simulations. We then 

show that all-atom MD models of ions can be coupled with BD description (1.1) using the intermediate coarse-grained 

model (1.2)– (1.5). We conclude by discussing related methods developed in the literature in Section 7. 

Molecular dynamics simulations of ions in SPC/E water  

There have been several MD models of liquid water developed in the literature. The simplest models (for example, SPC 

[13], SPC/E [14] and TIP3P [15]) include three sites in total, two hydrogen atoms and an oxygen atom. More complicated 

water models include four, five or six sites [16, 17]. In this paper, we use the threesite SPC/E model of water which was 

previously used for MD simulations of ions in aqueous solutions [18, 1]. In the SPC/E model, the charges (qh = 0.4238 

e) on hydrogen sites are at 1Å from the Lennard-Jones center at the oxygen site which has negative charge qo = −0.8476 

e. The HOH angle is 109.47◦ . We use the RATTLE algorithm [19] to satisfy constraints between atoms of the same water 

molecule. 

We investigate four ions (K+, Na+, Ca2+ and Cl−) at 25 ◦C using MD parameters presented in [18]. Let us consider a 

water molecule and let us denote by ri0 (resp., ri1 and ri2) the distance between the ion and the oxygen site (resp., the 

first and second hydrogen sites). The pair potential between the water molecule and the ion is then given by [1, 18], 
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where Aio and Bio are Lennard-Jones parameters between the oxygen on the water molecule and the ion, ke is Coulomb’s 

constant and qi is the charge on the ion. The values of parameters are given for four ions considered in Table 1. We express 

mass in daltons (Da), length in ångströms (Å) and time in picoseconds (ps), consistently in the whole paper. Using these 

units, the parameters of the 

 

Lennard-Jones potential between the oxygen sites on two SPC/E water molecules are Aoo = 2.6334 × 108 Da Å14 ps−2 

and Boo = 2.6171 × 105 Da Å8 ps−2 .  

We consider a cube of side L = 24.83 Å containing 511 water molecules and 1 ion, i.e. we have 8 3 = 512 molecules in 

our simulation box. In the following section, we use standard NVT simulations where the temperature is controlled using 

Nosé-Hoover thermostat [20, 21] and the number of particles is kept constant by implementing periodic boundary 

conditions. In particular, we assume that our simulation box is surrounded by periodic copies of itself. Then the long-

range (Coulombic) interactions can be computed using several different approaches, including the Ewald summation or 

the reaction field method [22, 23]. We use the cutoff sphere of radius L/2 and the reaction field correction as implemented 

in [1]. This approach is more suitable for multiscale methods (studied later in Section 6) than the Ewald summation 

technique. The MD timestep is for all MD simulations in this paper chosen as ∆t = 10−3 ps = 1 fs. 

3. Parametrization of the coarse-grained model of ion  

In MD simulations, an ion is descibed by its position X ≡ [X1, X2, X3] and velocity V ≡ [V1, V2, V3] which evolve 

according to 

 

where M is the mass of the ion (given in Table 1) and F ≡ [F1, F2, F3] is the force acting on the ion. We use all-atom MD 

simulations as described in Section 2 to estimate diffusion coefficient D and second moments of Vi and Ui = Fi/M, i = 1, 

2, 3. They are given for four ions considered in Table 2. To estimate hU 2 i i, we calculate the average force in the i-th 

direction hF 2 i i where h·i denotes an average over sufficiently large time interval (nanosecond) of MD simulations. 

Taking into account the symmetry of the problem, we estimate hU 2 i i = hF 2 i i/M2 as the average over all three 

dimensions 

 

This value is reported in Table 2. In the same way, the reported values of hV 2 i i are computed as averages over all three 

dimensions. Diffusion constant D can be 
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estimated by calculating mean square displacements or velocity autocorrelation functions. In Table 2, we report the values 

of D which were estimated in [1] by calculating mean square displacements. Let us consider the coarse-grained model 

(1.2)–(1.5) and let h·i denotes an average over many realizations of a stochastic process. Multiplying equations (1.3) and 

(1.4) by Vi and Ui , respectively, we obtain the following ODEs for second moments: 

 

Consequently, we obtain that hUiVii = 0 and hUiZii = 0 at steady state. Multiplying equations (1.3)–(1.5) by Vi , Ui and 

Zi , and taking averages, we obtain 

 

Using hUiVii = 0 and hUiZii = 0, we obtain that hViZii = 0 at steady state and 

 

This equation is used in Table 3 to estimate η1 using the MD averages hU 2 i i and hV 2 i i which are given in Table 2. 

Since we know the value of η1, we can also estimate the value of hZ 2 i i by calculating the second moment of 

 

This value is reported in the last column of Table 2. Multiplying equation (1.4) by Zi and equation (1.5) by Ui , we obtain 

 

Using hUiZii = 0 and hViZii = 0, we obtain at steady state 

 

Multiplying equation (1.2) by Xi , Vi , Ui and Zi and equations (1.3)–(1.5) by Xi and taking averages, we obtain the 

following system of ODEs for second moments: 
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Consequently, we obtain at steady state hXiVii = D, hXiUii = −hV 2 i i, hXiZii = η1D and 

 

Using (3.7) and (3.10), we have 

 

Finally, multiplying equation (1.5) by Zi , we obtain 

 

Consequently, we obtain at steady state 

 

The values calculated by (3.10), (3.15) and (3.17) are presented in Table 3. 

4. Accuracy of the coarse-grained model of ion  

The coarse-grained model (1.2)–(1.5) has four parameters ηi , i = 1, 2, 3, 4. To parameterize this model, we have used 

four quantities estimated from detailed MD simulations, diffusion constant D and steady state values of hV 2 i i, hU 2 i i 

and hZ 2 i i. In particular, the coarse-grained model (1.2)–(1.5) will give the same values of these four quantities, including 

the value of diffusion constant D which is the sole parameter of the BD model (1.1). In this section, we explain why the 

coarsegrained description given by (1.2)–(1.5) can be used as an intermediate model to couple BD and MD models.  

We begin by illustrating why Langevin dynamics (which is used in [12] for a similar multiscale problem) is not suitable 

for all-atom MD simulations studied in this paper. In [12], a few (heavy) particles with mass M and radius R are considered 

in the heat bath consisting of a large number of light point particles with masses m ≪ M. The collisions of particles are 

without friction, which means that post-collision velocities can be computed using the conservation of momentum and 

energy. In this case, it can be shown that the description of heavy particles converges in an apropriate limit to Brownian 

motion given by equation (1.1). One can also show that the model converges to Langevin dynamics (in the limit m/M → 

0) [24, 25, 26]: 
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where X ≡ [X1, X2, X3] is the position of a diffusing molecule, V ≡ [V1, V2, V3] is its velocity, D is the diffusion 

coefficient and γ is the friction coefficient. In [12], Langevin dynamics (4.1)–(4.2) is used as an intermediate model which 

enables the implementation of BD description (1.1) and the original detailed model in different parts of the computational 

domain. 

Langevin dynamics (4.1)–(4.2) describes a diffusing particle in terms of its position and velocity, i.e. it uses the same 

independent variables for the description of an ion as the MD model (3.1)–(3.2). Langevin dynamics can be further 

reduced to BD model (1.1) in the overdamped limit γ → ∞. However, it cannot be used as an intermediate model between 

BD and all-atom MD simulations considered in this paper, because it does not correctly describe the ion behaviour at 

times comparable to the MD timestep ∆t. To illustrate this, let us parameterize Langevin dynamics (4.1)–(4.2) using 

diffusion constant D and the second velocity moment hV 2 i i estimated from all-atom MD simulations. To get the same 

second moment of velocity, Langevin dynamics requires that we choose 

 

Discretizing equation (4.2), the ion acceleration during one time step is 

 

where [ξ1, ξ2, ξ3] is a vector of normally distributed random numbers with zero mean and unit variance. Using (4.3), the 

second moment of the right hand side of (4.4) is 

 

Using the MD values of D and hV 2 i i for K+ which are given in Table 2 and using MD timestep ∆t = 10−3 ps, we obtain 

that the second moment (4.5) is equal to 4.44 × 105 Å2 ps−4 . On the other hand, hU 2 i i estimated from all-atom 

MD simulations and given in Table 2 is 4.86 × 103 Å2 ps−4 which is one hundred times smaller. The main reason for this 

discrepancy is that Langevin dynamics postulates that the random force in equation (4.2) acting on the particle at time t 

is not correlated to the random force acting on the particle at time t + ∆t. However, this is not true for all-atom MD 

simulations where random force terms at subsequent time steps are highly correlated. 

Since Langevin dynamics is not suitable for coupling MD and BD models, we need to introduce a stochastic model of 

ion behaviour which is more complicated than Langevin dynamics. The coarse-grained model (1.2)–(1.5) studied in this 

paper is a relatively simple example of such a model. Its parametrization, discussed in Section 3, guarantees that the 

coarse-grained model (1.2)–(1.5) well approximates all-atom MD simulations at steady state. They both have the same 

value of diffusion constant D and steady state values of hV 2 i i, hU 2 i i and hZ 2 i i. Next, we show that the coarse-

grained model (1.2)–(1.5) also compares well with all MD simulations at shorter timescales. We consider the rate of 

change of acceleration (jerk or the scaled derivative of force). We define the average jerk as a function of current velocity 

and acceleration of the ion: 

 

To estimate J(v, u) from all-atom MD simulations, we calculate the rate of change of acceleration during each MD time 

step 

 

i.e. we run a long (nanosecond) MD simulation, calculate the values of (Ui(t + ∆t) − Ui(t))/∆t during every time step and 

record their average in two-variable array J(v, u) indexed by binned values of Vi(t) = v and Ui(t) = u. Since the estimated 

J(v, u) only weakly depends on u, we visualize our results in Figure 1 using two functions of one variable, v, namely 
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where pu(u) is the steady state distribution of Ui estimated from the same long time MD trajectory. As before, we use all 

three dimensions to calculate the averages J(v, u) and pu(u). Function J1(v) (which gives jerk at the most likely value of 

Ui) is plotted using crosses and function J2(v), the average over Ui variable, is plotted using circles in Figure 1. In order 

to compare all-atom MD simulations with the coarse-grained model (1.2)–(1.5), we calculate the corresponding jerk 

matrix J(v, u) for the coarse-grained model. We denote by p(v, u, z) the stationary distribution of the stochastic process 

(1.3)–(1.5), i.e. p(v, u, z) dv du dz is the probability that Vi(t) ∈ [v, v + dv), Ui(t) ∈ [u, u + du) and Zi(t) ∈ [z, z + dv). 

Then the jerk matrix (4.6) of the coarse-grained model (1.2)– (1.5) is 

 

 

Figure 1. Comparison of the rate of change of acceleration (jerk) computed by all-atom MD simulations and by the coarse-

grained model (1.2)–(1.5). MD results are visualized using functions J1(v) (black crosses) and J2(v) (blue circles) defined 

by equation (4.8). The result obtained by the coarse-grained model is given by formula (4.10) (red solid line). We consider 

(a) K+ ion; (b) Na+ ion; (c) Ca2+ ion and (d) Cl− ion. Parameters are given in Tables 1 and 3. 

Using (1.4), we rewrite it as 

 

The stationary distribution p(v, u, z) of (1.3)–(1.5) is Gaussian with mean [0, 0, 0]T and stationary covariance matrix: 
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Consequently, equation (4.9) implies 

 

 

In Figure 1, we plot (4.10) using the red solid line. The comparison with all atom MD results (circles and squares) is 

excellent for all four ions considered in this paper. In particular, we have shown that the coarse-grained model (1.2)–(1.5) 

provides a good description of the rate of change of acceleration (jerk) at the MD timescale. We make use of this property 

in Section 6 where we use the same time step (∆t = 10−3 ps) for both the coarse-grained model (1.2)–(1.5) and all-atom 

MD simulations. The coarse-grained model (1.2)–(1.5) can also be coupled with BD description (1.1), which uses much 

larger time steps, as we show in the next section. 

5. From the coarse-grained model (1.2)–(1.5) to Brownian dynamics 

 Let us consider the three-variable subsystem (1.3)–(1.5) of the coarse-grained model. Denoting yi = [Vi , Ui , Zi ], 

equations (1.3)–(1.5) can be written in vector notation as follows 

 

where matrix B ∈ R 3×3 and vector b ∈ R 3 are given as 

 

Let us denote the eigenvalues and eigenvectors of B as λj and νj = [ν1j , ν2j , ν3j ], j = 1, 2, 3, respectively. The eigenvalues 

of B are the solutions of the characteristic polynomial 

 

Since η1, η2 and η3 are positive parameters, we conclude that real parts of all three eigenvalues are negative and lie in 

interval (−η2, 0). Using the values of ηj , j = 1, 2, 3, given in Table 3, we present the values of eigenvalues λj , j = 1, 2, 3, 

in Table 4. The eigenvalues λj , j = 1, 2, 3, are distinct. The general solution of the 

SDE system (5.1) can be written as follows [27] 
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where c ∈ R 3 is a constant vector determined by initial conditions and matrix Φ(t) ∈ R 3×3 is given as Φ(t) = [exp(λ1t)ν1 

| exp(λ2t)ν2 | exp(λ3t)ν3], i.e. each column is a solution of the ODE system dyi = B yi dt. Considering deterministic initial 

conditions, equation (5.3) implies that the process is Gaussian at any time t > 0. Equations for means, variances and 

covariances then uniquely determine the distribution of yi(t) for t > 0. Equations for means can be written in the vector 

form as dhyii = B hyii dt. Equations for variances and covariances are given in Section 3 as equations (3.3)–(3.6), (3.9), 

(3.11)–(3.14) and (3.16).  

There are two important conclusions of the above analysis. First of all, eigenvalues λj , j = 1, 2, 3, given in Table 4 satisfy 

 

where Re denotes the real part of a complex number. There is a spectral gap between the first eigenvalue and the complex 

conjugate pair of eigenvalues. If we used this spectral gap, we could reduce the system to two evolution equations for 

times t ≫ 1/|λ1|. However, there is no spectral gap to reduce the system to Langevin dynamics (4.1)–(4.2). In particular, 

we again confirm our conclusion that a coarse-grained approximation of ion behaviour is not given in terms of Langevin 

dynamics. Our second conclusion is that on a picosecond time scale, we can assume stationarity in (5.1) to get 

 

Using (3.7), (3.15) and (3.17), we have 

 

Consequently, equation (5.4) is equivalent to BD description (1.1). The convergence of (1.2)–(1.5) to the BD model is 

illustrated in Figure 2(a). We solve the system of 10 ODEs for variances and covariances given as equations (3.3)– (3.6), 

(3.9), (3.11)–(3.14) and (3.16). We consider (deterministic) zero initial conditions, i.e. Xi(0) = Vi(0) = Ui(0) = Zi(0) = 0. 

All moments are then initially equal to zero. We plot the mean square displacement hX2 i i as a function of time. We 

compare it with the mean square displacement of BD model (1.1) which is given as 2Dt. We observe that there is an 

approximately constant shift, denoted t ∗ 1 , between both solutions for times t > 0.2 ps. We illustrate this further by 

plotting hX2 i (t + t ∗ 1 )i in Figure 2(a). The values of shift t ∗ 1 for different ions estimated by solving the ODEs for 

second moments with zero initial conditions are given in Table 4. 

Next, we show how the BD model (1.1) and the coarse-grained model (1.2)– (1.5) can be used in different parts of the 

computational domain. This coupling will form one component of multiscale methodology developed in Section 6. BD 

algorithms based on equation (1.1) have been implemented in a number of methods designed for spatio-temporal 

modelling of intracellular processes, 

 

Figure 2. (a) Comparison of the coarse-grained model (1.2)–(1.5) and BD description (1.1) for K + ion. The mean square 

displacement computed by solving 10 ODEs (3.3)–(3.6), (3.9), (3.11)– (3.14) and (3.16) with zero initial conditions (black 

solid line). The same curve shifted by the value of t ∗ 1 is plotted as a red dashed line. (b) Test of accuracy of the multiscale 
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approach in Ω3 ∪ Ω4 ∪ Ω5 for K + ion. Histogram obtained by simulating 106 ions over time 103 ps is compared with 

the analytical result (5.6) (red solid line). Grey bars show the ion density in Ω3, the green bar shows the ion density in 

Ω4 and blue bars show the ion density in Ω5. Parameters are given in Tables 1 and 3. 

including Smoldyn [28], MCell [29] and Green’s-function reaction dynamics [30]. Smoldyn discretizes (1.1) using a fixed 

BD time step ∆T, i.e. it computes the time evolution of the position X ≡ X(t) of each molecule by 

 

where [ξ1, ξ2, ξ3] is a vector of normally distributed random numbers with zero mean and unit variance. We use 

discretization (5.5) of BD model (1.1) in this paper. BD time step ∆T has to be chosen much larger than the MD time step 

∆t. We use ∆T = 0.5 ps, but any larger time step would also work well. We could also use a variable time step, as 

implemented in the Green’s Function Reaction Dynamics [30]. 

In Section 6, we consider all-atom MD simulations in domain Ω ⊂ R 3 . Our main goal is to design a multiscale approach 

which can compute spatio-temporal statistics with the MD-level of detail in relatively small subdomain Ω1 ⊂ Ω by using 

BD model (5.5) in the most of the rest of the computational domain. This is achieved by decomposing domain Ω into five 

subdomains Ωj , j = 1, 2, 3, 4, 5 (see equation (6.1) and discussion in Section 6). We use MD in Ω1, the coarsegrained 

model (1.2)–(1.5) in Ω3 and the BD model (5.5) in Ω5. The remaining two subdomains, Ω2 and Ω4, are two overlap 

(hand-shaking) regions where two different simulation approaches can be used at the same time [12, 31]. In the rest of 

this section, we focus on simulations in region Ω3 ∪ Ω4 ∪ Ω5 which concerns coupling the coarse-grained model (1.2)–

(1.5) with the BD model (5.5). We use the coarse-grained model in Ω3 ∪ Ω4 and the BD model (5.5) in Ω4 ∪ Ω5. In 

particular, we use both models in the overlap region Ω4. Each particle which is initially in Ω3 is simulated according to 

(1.2)–(1.5) (discretized using time step ∆t) until it 

enters Ω5. Then we use (5.5) to evolve the position of a particle (over BD time steps of length ∆T) until it again enters 

Ω3 when we switch the description back from the BD model to the coarse-grained model. In order to do this, we have to 

initialize variables Vi , Ui and Zi , i = 1, 2, 3. We use deterministic initial conditions, Vi(0) = Ui(0) = Zi(0) = 0, disccused 

above.  

In Figure 2(b), we present an illustrative simulation where Ω3 ∪ Ω4 ∪ Ω5 = R 3 for simplicity. We use Ω3 = (h, ∞) × R 

2 , Ω4 = [−h, h] × R 2 and Ω5 = (−∞, −h) × R 2 , where h = 1 Å. We report averages over 106 simulations of ions, half of 

them are initiated at X(0) = [h, 0, 0], i.e. they initially follow the coarse-grained model (1.2)–(1.5) with zero initial 

condition for other variables (Vi(0) = Ui(0) = Zi(0) = 0). The second half of ions are initiated at X(0) = [−h, 0, 0], i.e. they 

initially follow BD description (5.5). We plot the (marginal) distribution of ions along the first coordinate (X1) at time 

103 ps in Figure 2(b). The computed histogram is plotted using bins of length 2 Å, i.e. the overlap region Ω4 is equal to 

one bin (visualized as a green bar). Grey (resp. blue) bars show the density of ions in Ω3 (resp. Ω5). We compare our 

results with the analytical distribution computed for BD description (1.1) at time t = 103 ps given by 

 

The computed histogram compares well with (5.6), although we can observe a small error: the green bar is slightly taller 

than the corresponding value of (5.6). If we wanted to further improve the accuracy, we could take into account that there 

is time shift t ∗ 1 , discussed above, introduced to the multiscale approach by using the deterministic initial conditions, 

Vi(0) = Ui(0) = Zi(0) = 0, for ions entering domain Ω3. Another possibility is to sample the initial condition for Vi , Ui 

and Zi from a suitable distribution. If we use the stationary distribution of subsystem (1.3)–(1.5), then hV 2 i i does not 

evolve and is equal to 

 

Substituting this constant for hV 2 i i into (3.12), the system of 10 ODEs for second moments of (1.2)–(1.5) simplifies to 

4 ODEs (3.11)–(3.14). Solving system (3.11)– (3.14) with zero initial conditions (assuming Xi(0) = 0), we can again 

compute the mean square displacement. As in Figure 2(a), it can be shifted in time to better match with the BD result, 

2Dt. We denote this time shift as t ∗ 2 . Its values are given in Table 4. We observe that t ∗ 2 is negative and t ∗ 1 is positive 

for all four ions considered in Table 4. Both time shifts t ∗ 1 and t ∗ 2 (together with optimizing size h of the overlap 
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region) could be used to further improve the accuracy of multiscale simulations in Ω3 ∪ Ω4 ∪ Ω5 [12]. However, our 

main goal is to introduce a multiscale approach which can use all-atom MD simulations in Ω1. Since MD simulations are 

computationally intensive, we will only consider 100 realizations of the multiscale method in Section 6. In particular, the 

Monte Carlo error will be larger than the error observed in Figure 2(b). Thus, we can use the above approach in Ω3 ∪ Ω4 

∪ Ω5 without introducing observable errors in the multiscale method developed in the next section. 

 

6. Coupling all-atom MD and BD  

Let us consider all-atom MD in domain Ω ⊂ R 3 which is so large that direct MD simulations would be too 

computationally expensive. Let us assume that a modeller only needs to consider the MD-level of detail in a relatively 

small subdomain Ω1 ⊂ Ω while, in the rest of the computational domain, ions are transported by diffusion and BD 

description (1.1) is applicable. For example, domain Ω1 could include binding sites for ions or (parts of) ion channels. In 

this paper, we do not focus on a specific application. Our goal is to show that the coarse-grained model (1.2)–(1.5) is an 

intermediate model between all-atom MD and BD which enables the use of both methods during the same dynamic 

simulation. To achieve this, we decompose domain Ω into five subdomains, denoted Ωj , j = 1, 2, 3, 4, 5, see Figure 3. 

These sets are considered pairwise disjoint (i.e. Ωi ∩ Ωj = ∅ for i 6= j) and 

 

In our illustrative simulations, we consider the behaviour of one ion. If the ion is in subdomain Ω1, then we use all-atom 

MD simulations as described in Section 2. In particular, the force between the ion and a water molecule is obtained by 

differentiating potential (2.1), provided that the distance between the ion and the water molecule is less than the cutoff 

distance (L/2). Let us denote the force exerted by the ion on the water molecule by Fiw(ri0, ri1, ri2), where ri0 (resp., ri1 

and ri2) is the distance between the ion and the oxygen site (resp., the first and second hydrogen sites) on the water 

molecule. We use periodic boundary conditions for water molecules in Ω1. 

Whenever the ion leaves Ω1, it enters Ω2 where we simulate its behaviour using the coarse-grained model (1.2)–(1.5). 

We still simulate water molecules in Ω1 and we allow them to experience additional forces exerted by the ion which is 

present 

in Ω2. These forces have the same functional form, Fiw, as in MD, but they have modified arguments as follows 

 

where ω ≥ 0 is a parameter and dist(X, Ω1) is the (closest) distance between the ion at position X and subdomain Ω1. If 

the ion is in region Ω3 ∪ Ω4 ∪ Ω5, then water molecules in Ω1 are no longer simulated. We use the coarse-grained model 

(1.2)–(1.5) to simulate the ion behaviour in Ω3 and the BD model (5.5) in Ω5. Overlap region Ω4 is used to couple these 

simulation methods as explained in Section 5 

In Section 5, we have already presented illustrative simulations to validate the multiscale modelling strategy chosen in 

region Ω3 ∪ Ω4 ∪ Ω5. Next, we focus on testing and explaining the multiscale approach chosen to couple region Ω1 

with Ω2. The key idea is given by force term (6.2) which is used for MD simulations of water molecules in Ω1 when an 

ion is in Ω2. This force term has two important properties:  
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(i) If an ion is on the boundary of Ω1, i.e. X ∈ ∂Ω1, then dist(X, Ω1) = 0 and force (6.2) is equal to force term 

Fiw(ri0, ri1, ri2) used in Ω1.  
(ii)  If ω dist(X, Ω1) ≥ L/2, then force (6.2) is equal to zero.  

Property (i) implies that formula (6.2) continuously extends the force term used in MD. In particular, water molecules do 

not experience abrupt changes of forces when the ion crosses boundary ∂Ω1. Property (ii) is a consequence of the cutoff 

distance used (together with the reaction field correction [1]) to treat long-range interactions. In our illustrative 

simulations, we us 

 

Property (ii) implies that extra force (6.2) is equal to zero on boundary ∂Ω2 \ ∂Ω1 which is the boundary between regions 

Ω2 and Ω3. This is consistent with the assumption that ions in region Ω3 ∪ Ω4 ∪ Ω5 do not interact with water molecules 

in region Ω1. 

If an ion is in Ω1, we use all-atom MD as formulated in Section 2. Periodic boundary conditions are implemented in MD 

simulations. Water molecules are subject to forces exerted by the ion at its real position X in Ω1, but also by its copies at 

periodic locations X + (iL, jL, kL) where i, j, k ∈ Z. When the ion moves to Ω2, one of its copies is in Ω1. Force term 

(6.2) is designed in such a way, that the strength of interaction decreases (for every copy of the ion) with the distance, 

dist(X, Ω1), between the real position of the ion and Ω1. In particular, force term (6.2) ensures that there are continuous 

changes of all forces when the ion moves between regions Ω1, Ω2 and Ω3 

In Figure 4, we present results of simulations of K+ ion in region Ω1 ∪ Ω2. We consider 100 realizations of a multiscale 

simulation with one ion. Its initial position is X(0) = [−L/2, 0, 0] which lies on boundary ∂Ω1. We simulate each realization 

for time 10 ps which is short enough that all trajectories stay inside the ball of radius L/2 centred at X(0). Then X1-

coordinate of the trajectory determines whether the ion is in Ω1 or Ω2. If X1(t) ≥ −L/2, then the ion is in Ω1 and it is 

simulated using all-atom MD. If X2(t) < −L/2, then the ion is in Ω 

 

Figure 4. (a) One hundred realizations of a multiscale simulation of K+ ion initiated at [−L/2, 0, 0]. We plot X1 coordinate 

as a function of time. Ion is described by all-atom MD for X1 ≥ −L/2 and by the coarse-grained model (1.2)–(1.5) for X1 

< −L/2. The boundary between Ω1 and Ω2 is visualized using the black dashed line. We use ω = 1 in (6.2). (b) The mean 

square displacement in the first coordinate of K+ ion simulated in Ω1 ∪ Ω2 and computed as the average of 100 

realizations for ω = 1 (blue circles), ω = 2 (black crosses) and ω = 10 (green squares). 

and evolves according to the coarse-grained model (1.2)–(1.5). In Figure 4(a), we use (6.2) with ω = 1 and plot X1 

coordinates of all 100 realizations. We observe that the computed trajectories spread on both sides of boundary ∂Ω1 

(dashed line) without any significant bias. The mean square displacement is presented in Figure 4(b) for three different 

values of ω. The results compare well with (2Dt) 1/2 which is the mean square displacement of one coordinate of the 

diffusion process.  

We conclude with illustrative simulations which are coupling all-atom MD with BD. We use domain Ω ∈ R 3 decomposed 

into five regions as in equation (6.1), where Ω1 and Ω2 are given by (6.3), and 
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where ω = 10, h1 = L/20 and h2 = L/10. Then the BD domain is Ω5 = R 3 \ [−7L/10, 7L/10]3 . We place an ion at the 

origin (centre of MD domain Ω1), i.e. X(0) = [0, 0, 0], and we simulate each trajectory until it reaches the distance 4L = 

99.32 Å from the origin. Let T (r) be the time when a trajectory first reaches distance r from the origin. In Figure 5, we 

plot escape time T (r) as a function of distance r. We plot the value of T (r) for each realization as a blue point. The largest 

computed escape times (for r = 4L) are 38, 506 ps for K+ and 47, 212 ps for Na+. They are outside the range of panels in 

Figure 5, but the majority of data poins are included in this figure. We also plot average hT (r)i (red solid 

 

Figure 5. Escape time T (r) to reach distance r from the origin computed by the multiscale method. We consider (a) K+ 

ion; and (b) Na+ ion. We plot escape times for individual realizations (blue points), the mean escape time estimated from 

100 realizations (red solid line) and the theoretical 95% confidence interval (6.7) (green area). We use ω = 10 in (6.2). 

line) together with 95% confidence intervals. They are compared with theoretical results obtained for the BD model (1.1). 

The escape time distribution for the BD model (1.1) has mean equal to hT (r)i = L 2/(6D) and standard deviation L 2/(3√ 

10 D). The corresponding theoretical 95% confidence interval (for 100 samples) is 

 

This interval is visualized as the green area in Figure 5. We note that it would be relatively straightforward to continue 

the presented multiscale computation and simulate ion diffusion in domains covering the whole cell. The most 

computationally intensive part is all-atom MD simulation in Ω1 ∪ Ω2. However, once the ion enters Ω5, we can compute 

its trajectory very efficiently. We could further increase the BD time step in parts of Ω5 which are far away from Ω4, or 

we could use event-based algorithms, like Green’s-function reaction dynamics [30] or First-passage kinetic Monte Carlo 

method [32], to compute the ion trajectory in region Ω5 

 

7. Discussion 

 In this paper, we have introduced and studied the coarse-grained model (1.2)– (1.5) of an ion in aqueous solution. We 

have parameterized this model using all-atom MD simulations for four ions (K+, Na+, Ca2+ and Cl−) and showed that 

this model provides an intermediate description between all-atom MD and BD simulations. It can be used both with MD 

time step ∆t (to couple it with all-atom MD simulations) and BD time step ∆T (to couple it with BD description (1.1)). In 

particular, the coarse-grained model enables multiscale simulations which use all-atom MD and BD in different parts of 

the computational domain. 
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In Section 6, we have illustrated this multiscale methodology using a first passage type problem where we have reported 

the time taken by an ion to reach a specific distance. Possible applications of this multiscale methodogy include problems 

where a modeller considers all-atom MD in several different parts of the cell (for example, close to binding sites or ion 

channels) and wants to use efficient BD simulations to transport ions by diffusion between regions where MD is used. 

The proposed approach thus enables the inclusion of MD-level of detail in computational domains which are much larger 

than would be possible to study by direct MD simulations. 

y direct MD simulations. Although the illustrative simulations in Section 6 are reported over distances of the order of 102 

Å, this is not a restriction of the method. Most of the computational time is spent by considering all-atom MD in Ω1 ∪ 

Ω2. BD uses much larger time step which enables us to futher extend BD region Ω5 (and consequently, the original 

domain Ω). Moreover, if we are far away from MD domain Ω1, we can further increase the efficiency of BD simulations 

by using different BD time steps in different parts of the BD subdomain Ω5 [12], or by using event-based BD algorithms 

[30, 32]. The computational intensity of BD simulations can be further decreased by using multiscale methods which 

efficiently and accurately combine BD models with lattice-based (compartmentbased) models [33, 34]. Such a strategy 

have been previously used for modelling intracellular calcium dynamics [3, 7] or actin dynamics in filopodia [35], and 

enables us to extend both temporal and spatial extent of the simulation. 

In the literature, MD methods have been used to estimate parameters of BD simulations of ions [36]. There has also been 

a lot of progress in systematic coarsegraining of MD simulations [37]. The approach presented in this paper not only uses 

all-atom MD simulations to estimate parameters of a coarser description, but it also designs a multiscale approach where 

both methods are used during the same simulation. Methods which adaptively change the resolution of MD on demand 

have been previously reported in [38, 39]. They include algorithms which couple all-atom MD with coarse-grained MD. 

The coarse-grained model developed in this work does not include any water molecules and has different application 

areas. One of them is modelling of calcium induced calcium release through IP3R channels [3] which is discussed as a 

motivating example in Introduction. MD simulations in this paper use the three-site SPC/E model of water. An open 

question is to extend our observations and analysis to other MD models of water, which include both more detailed water 

models with additional sites [16, 17] and coarse-grained MD models of water [40]. 
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