# Common Fixed Point Theorems Of Gregus Type For Compatible Mappings In Banach Spaces 

1*Neelmani Gupta


#### Abstract

In this paper, we prove a common fixed point theorem of Gregus type for compatible mappings in Banach space. .Our work generalizes several earlier results on fixed points in this direction.


Key Words: Common fixed point, compatible mappings, weakly compatible mappings, best approximant.
AMS Subject classification (2000): Primary 54H25, Secondary 47H10

## 1 INTRODUCTION AND PRELIMINARIES:

The following definitions and results will be used in this paper.
In [8], Jungck defined the concept of compatibility of two mappings, which includes weakly commuting mappings (Sessa [15] )as proper sub class.

### 1.1 Definition:

Let $X$ be a normed linear space and let $S, T: X \rightarrow X$ be two mappings $S$ and $T$ are said to be compatible if, whenever $\left\{x_{n}\right\}$ is a sequence in $X$ such that $S x_{n}, T x_{n} \rightarrow x \in X$, then

$$
\left\|S T x_{n}-T S x_{n}\right\| \rightarrow 0 \text { as } n \rightarrow \infty
$$

In (1998), Jungck and Rhoades[10] introduced the notion of weakly compatible maps and showed that compatible maps are weakly compatible but converse need not be true.

### 1.2 Definition:

A pair of $S$ and $T$ is called weakly compatible pair if they commute at coincidence points.

### 1.3 Example:

Consider $X=[0,2]$ with the usual metric $d$. Define mappings $S, T: X \rightarrow X$ by
$S x=0$ if $x=0, S x=0.15$ if $x>0$
$T x=0$ if $x=0, T x=0.3$ if $0<x \leq 0.5, T x=x-0.35$ if $x>0.5$
Since $S$ and $T$ commute at coincidence point $0 \in X$, so $S$ and $T$ are weakly compatible maps to see that $S$ and $T$ are not compatible, let us consider a decreasing sequence $\left\{x_{n}\right\}$ where $x_{n}=0.5+\left(\frac{1}{n}\right), n=1,2, \ldots$ Then $S x_{n} \rightarrow 0.15, T x_{n} \rightarrow 0.15$ but $S T x_{n} \rightarrow 0.15, T S x_{n} \rightarrow 0.3$ as $n \rightarrow \infty$. Thus weakly compatible compatible maps need not be compatible.

## 2. MAIN RESULTS:

We prove a common fixed point theorem of Gregus type for compatible mappings in Banach space. Our Theorem is improvement of results of Gregus[6], Jungck [9], Sharma and Deshpande [17].
Throughout this section, we assume that $X$ is Banach space and $C$ is non empty closed convex subset of $X$.
Now, we prove our main theorem.

### 2.1 Theorem :

Let $S$ and $T$ be compatible mappings of $C$ into itself satisfying the following condition:

$$
\begin{aligned}
\|T x-T y\| \leq & a\|S x-S y\|+b \max \{\mid T x-S x\| \|\|T y-S y\|\} \\
& +c \max \{\mid S x-S y\|,\| T x-S x\|,\| T y-S y \|\}
\end{aligned}
$$

[^0]International Journal of Psychosocial Rehabilitation, Vol.13, Issue 1, 2009
ISSN: 1475-7192

$$
\begin{equation*}
+d \max \left\{\|S x-S y\|,\|T x-S x\|,\|T y-S y\|, \frac{1}{2}(\|T y-S x\|+\|T x-S y\|)\right\} \tag{1}
\end{equation*}
$$

for all $x, y$ in $C$ where $a, b, c, d>0, a+b+c+d=1$ and $a+c+d<\sqrt{a}$ if $S$ is linear and continuous in $C$ and $T(C) \subset S(C)$. Then $T$ and $S$ have a unique common fixed point $z$ in $C$ and $T$ is continuous at $z$.

Proof : Consider $x=x_{0}$ be an arbitarary point in $C$ and choose points $x_{1}, x_{2}$ and $x_{3}$ in $C$ such that $S x_{1}=T x, S x_{2}=T x_{1}, S x_{3}=T x_{2}$
This can be done since $T(C) \subset S(C)$. for $\mathrm{r}=1,2,3, \ldots$. (1) leads to

$$
\begin{aligned}
\| T x_{r} & -S x_{r}\|=\| T x_{r}-T x_{r-1} \| \\
& \leq a\left\|S x_{r}-S x_{r-1}\right\|+b \max \left\{\left\|x_{r}-S x_{r}\right\|\| \| x_{r-1}-S x_{r-1} \|\right\} \\
& +c \max \left\{\left\|S x_{r}-S x_{r-1}\right\|,\left\|T x_{r}-S x_{r}\right\|,\left\|T x_{r-1}-S x_{r-1}\right\|\right\} \\
& +d \max \left\{\left\|S x_{r}-S x_{r-1}\right\|,\left\|T x_{r}-S x_{r}\right\|\left\|T x_{r-1}-S x_{r-1}\right\|, \frac{1}{2}\left(\left\|T x_{r-1}-S x_{r}\right\|+\left\|T x_{r}-S x_{r-1}\right\|\right)\right\}
\end{aligned}
$$

which shows that,since

$$
\left\|S x_{r}-S x_{r-1}\right\|=\left\|T x_{r-1}-S x_{r-1}\right\|,
$$

we have, for $r=1,2,3, \ldots$

$$
\begin{equation*}
\left\|T x_{r}-S x_{r}\right\| \leq\left\|T x_{r-1}-S x_{r-1}\right\| . \tag{2}
\end{equation*}
$$

From (1) and (2) we have

$$
\begin{align*}
& \left\|T x_{2}-S x_{1}\right\|=\left\|T x_{2}-T x\right\| \\
& \leq a| | S x_{2}-S x \|+b \max \left\{\left\|T x_{2}-S x_{2}\right\|\| \| T x-S x \|\right\} \\
& +c \max \left\{| | S x_{2}-S x\|,\| T x_{2}-S x_{2}\|,\| T x-S x \|\right\} \\
& +d \max \left\{\left\|S x_{2}-S x\right\|\| \| x_{2}-S x_{2}\|,\| T x-S x \|, \frac{1}{2}\left(\left\|T x-S x_{2}\right\|+\left\|T x_{2}-S x\right\|\right)\right\} \\
& \leq a\left\|T x_{1}-S x\right\|+b \max \{\mid T x-S x\|,\| T x-S x \|\} \\
& +c \max \left\{\mid T x_{1}-S x\|,\| T x-S x\|,\| T x-S x \|\right\} \\
& +d \max \left\{\mid T x_{1}-S x\|,\| T x-S x\|,\| T x-S x \|, \frac{1}{2}\left(\left\|T x-T x_{1}\right\|+\left\|T x_{2}-S x\right\|\right)\right\} \\
& \leq 2 a|T x-S x\|+b| | T x-S x\|+2 c| \mid T x-S x \|+d \max \left\{\mid T x_{1}-S x\|,\| T x-S x\|,\| T x-S x \|,\right. \\
& \left.\frac{1}{2}\left(\left\|T x-S x_{1}\right\|+\left\|T x_{1}-S x_{1}\right\|+\left\|T x_{2}-S x_{2}\right\|+\left\|S x_{2}-S x\right\|\right)\right\} \\
& \leq 2 a| | T x-S x\|+b\| T x-S x\|+2 c| | T x-S x\|+d \max \left\{\left\|T x_{1}-S x\right\|\| \| T x-S x\|,\| T x-S x \|,\right. \\
& \left.\frac{1}{2}\left(\|T x-S x\|+\|T x-S x\|+\left\|T x_{1}-S x\right\|\right)\right\} \\
& \leq 2 a\|T x-S x\|+b\|T x-S x\|+2 c| | T x-S x\|+2 d\| T x-S x \| \\
& \leq\{(2 a+2 c+2 d)+b\} \mid T x-S x \| \tag{3}
\end{align*}
$$

We shall now define a point

$$
z=\left(\frac{1}{2}\right) x_{2}+\left(\frac{1}{2}\right) x_{3} .
$$

Since $C$ is convex, $z \in C$ and $S$ being linear

$$
\begin{align*}
& \quad S z=\left(\frac{1}{2}\right) S x_{2}+\left(\frac{1}{2}\right) S x_{3} \\
& =\left(\frac{1}{2}\right) T x_{1}+\left(\frac{1}{2}\right) T x_{2} \tag{4}
\end{align*}
$$

It follows from (2), (3) and (4) that

$$
\begin{align*}
\left\|S z-S x_{1}\right\| & =\left\|\left(\frac{1}{2}\right) T x_{1}+\left(\frac{1}{2}\right) T x_{2}-S x_{1}\right\| \\
& \leq\left(\frac{1}{2}\right)\left\|T x_{1}-S x_{1}\right\|+\left(\frac{1}{2}\right)\left\|T x_{2}-S x_{1}\right\| \\
& \leq\left(\frac{1}{2}\right)\|T x-S x\|+\left(\frac{1}{2}\right)\{(2 a+2 c+2 d)+b\}\|T x-S x\| \\
& \leq\left(\frac{1}{2}\right)\{1+(2 a+2 c+2 d)+b\}\|T x-S x\| \tag{5}
\end{align*}
$$

By (2) and (4), we have

$$
\begin{align*}
\left\|S z-S x_{2}\right\| & =\left\|\left(\frac{1}{2}\right) T x_{1}+\left(\frac{1}{2}\right) T x_{2}-S x_{2}\right\| \\
& \leq\left(\frac{1}{2}\right)\left\|T x_{2}-S x_{2}\right\| \\
& \leq\left(\frac{1}{2}\right)\|T x-S x\| . \tag{6}
\end{align*}
$$

By (1) and (6) we have

$$
\begin{aligned}
& \qquad\|T z-S z\|=\left\|T z-\left(\frac{1}{2}\right) T x_{1}-\left(\frac{1}{2}\right) T x_{2}\right\| \\
& \leq\left(\frac{1}{2}\right)\left\|T z-T x_{1}\right\|+\left(\frac{1}{2}\right)\left\|T z-T x_{2}\right\| \\
& \leq\left(\frac{1}{2}\right) a\left\|S z-S x_{1}\right\|+\left(\frac{1}{2}\right) b \max \left\{\mid T z-S z\| \| T x_{1}-S x_{1} \|\right\} \\
& +\left(\frac{1}{2}\right) c \max \left\{\mid S z-S x_{1}\|,\| T z-S z\|,\| T x_{1}-S x_{1} \|\right\} \\
& +\left(\frac{1}{2}\right) d \max \left\{\left\|S z-S x_{1}\right\|,\|T z-S z\|,\left\|T x_{1}-S x_{1}\right\|,\right. \\
& \left.\frac{1}{2}\left(\left\|T x_{1}-S z\right\|+\left\|T z-S x_{1}\right\|\right)\right\}+\left(\frac{1}{2}\right) a\left\|S z-S x_{2}\right\|+\left(\frac{1}{2}\right) b \max \left\{\|T z-S z\|,\left\|T x_{2}-S x_{2}\right\|\right\} \\
& +\left(\frac{1}{2}\right) c \max \left\{\left\|S z-S x_{2}\right\|,\|T z-S z\|,\left\|T x_{2}-S x_{2}\right\|\right\} \\
& +\left(\frac{1}{2}\right) d \max \left\{\left\|S z-S x_{2}\right\|,\|T z-S z\|,\left\|T x_{2}-S x_{2}\right\|,\right. \\
& \left.\left.\frac{1}{2}\left(\left\|T x_{2}-S z\right\|+\left\|T z-S x_{2}\right\|\right)\right\}\right\} \\
& \quad \leq\left(\frac{1}{4}\right) a[1+2 a+2 c+2 d+b]\|T x-S x\|+\left(\frac{1}{2}\right) b \max \{\|T z-S z\|,\|T x-S x\|\} \\
& \quad+\left(\frac{1}{2}\right) c \max \left\{\frac{1}{2}(1+2 a+2 c+b+2 d)\|T x-S x\|,\|T z-S z\|\|,\| T x-S x \|\right\} \\
& \quad+\left(\frac{1}{2}\right) d \max \left[\frac{1}{2}(1+2 a+2 c+b+2 d)\|T x-S x\|,\|T z-S z\|,\|T x-S x\|,\right.
\end{aligned}
$$

$$
\begin{align*}
& \left.\frac{1}{2}\{(2+2 a+2 c+2 d+b)\|T x-S x\|+\|T z-S z\|\}\right]+\left(\frac{1}{4}\right) a\|T x-S x\| \\
+ & \left(\frac{1}{2}\right) b \max \{\|T z-S z\|,\|T x-S x\|\}+\left(\frac{1}{2}\right) c \max \left\{\frac{1}{2}\|T x-S x\|,\|T z-S z\|,\|T x-S x\|\right\} \quad \leq \lambda\|T x-S x\|,  \tag{7}\\
+ & \left(\frac{1}{2}\right) d \max \left\{\frac{1}{2}\|T x-S x\|,\|T z-S z\|,\|T x-S x\|, \frac{1}{2}(2\|T x-S x\|+\|T z-S z\|)\right\}
\end{align*}
$$

where

$$
\begin{aligned}
\lambda & =\left(\frac{1}{4}\right) a[2+2 a+2 c+2 d+b]+b+\frac{1}{4} c[1+2 a+2 c+b+2 d] \\
& +\frac{1}{2} c+\frac{1}{4} d[2+2 a+2 c+b+2 d]+d \\
& <\frac{1}{4} a(3+\sqrt{a})+\frac{1}{4} c(2+\sqrt{a})+b+\frac{1}{2} c+\frac{d}{4}(3+\sqrt{a})+d \\
& <\frac{a}{4}+\frac{3 a}{4}+b+c+d \\
& =a+b+c+d=1
\end{aligned}
$$

So we have $0<\lambda<1$.
Since $x$ is an arbitary point in $C$, from (7), it follows that there exists a sequence $\left\{z_{n}\right\}$ in $C$ such that

$$
\begin{aligned}
& \left\|T z_{0}-S z_{0}\right\| \leq \lambda\left\|T x_{0}-S x_{0}\right\|, \\
& \left\|T z_{1}-S z_{1}\right\| \leq \lambda\left\|T z_{0}-S z_{0}\right\|, \\
& -------------- \\
& -------------- \\
& \left\|T z_{n}-S z_{n}\right\| \leq \lambda\left\|T z_{n-1}-S z_{n-1}\right\|,
\end{aligned}
$$

which yield that

$$
\left\|T z_{n}-S z_{n}\right\| \leq \lambda^{n+1}\left\|T x_{0}-S x_{0}\right\|
$$

and so we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|T z_{n}-S z_{n}\right\|=0 \tag{8}
\end{equation*}
$$

Setting $K_{n}=\left\{x \in C:\|T x-S x\| \leq \frac{1}{n}\right\}$
for $n=1,2, \ldots$ then (8) shows that

$$
K_{n} \neq \phi \quad \text { for } n=1,2, \ldots
$$

and $K_{1} \supset K_{2} \supset K_{3} \supset \ldots$
obviously, we have $\overline{T K_{n}} \neq \phi$ and
$\overline{T K_{n}} \supset \overline{T K_{n+1}}$ for $\mathrm{n}=1,2, \ldots$
for any $x, y$ in $K_{n}$ by (1), we have

$$
\left.\begin{array}{l}
\|T x-T y\| \leq a\|S x-S y\|+n^{-1} b+c \max \left\{\|S x-S y\|, n^{-1}\right\} \\
\quad+d \max \left\{\|S x-S y\|, n^{-1}, \frac{1}{2}\left(n^{-1}+\|S x-S y\|+n^{-1}+\|S x-S y\|\right)\right\} \\
\leq a\|S x-S y\|+n^{-1} b+c \max \left\{\|S x-S y\|, n^{-1}\right\} \\
+ \\
\quad d \max \left\{\|S x-S y\|, n^{-1},\left(n^{-1}+\|S x-S y\|\right)\right\} \\
\leq \\
\quad a\left(2 n^{-1}+\|T x-T y\|\right)+n^{-1} b+c\left(2 n^{-1}+\|T x-T y\|\right)+d\left(3 n^{-1}+\|T x-T y\|\right) \\
=
\end{array}[a+c] 2 n^{-1}+[a+c+d]\|T x-T y\|+n^{-1} b+3 n^{-1} d\right)
$$

International Journal of Psychosocial Rehabilitation, Vol.13, Issue 1, 2009
ISSN: 1475-7192
Therefore,

$$
\|T x-T y\| \leq n^{-1}\{2[a+c]+b+3 d\}(1-a-c-d)^{-1}
$$

Thus we have
$\lim _{n \rightarrow \infty} \operatorname{diam}\left(\overline{T K_{n}}\right)=\lim _{n \rightarrow \infty} \operatorname{diam}\left(T K_{n}\right)=0$
By Cantor's theorem, there exists a point $u$ in $C$ such that

$$
\bigcap_{n=1}^{\infty}\left(\overline{T K_{n}}\right)=\{u\} .
$$

Since $u \in C$ for each $n=1,2, \ldots$ there exists a point $y_{\mathrm{n}}$ in $T K_{\mathrm{n}}$ such that
$\left\|y_{n}-u\right\|<n^{-1}$
Then there exists a point $x_{\mathrm{n}}$ is $K_{\mathrm{n}}$ such that
$\left\|u-T x_{n}\right\|<n^{-1}$
and so $T x_{n} \rightarrow u$ as $n \rightarrow \infty$.
Since $x_{n} \in k_{n}$, we have also

$$
\left\|T x_{n}-S x_{n}\right\|<n^{-1}
$$

and so $S x_{n} \rightarrow u$ as $n \rightarrow \infty$.
Since $S$ is continuous $S T x_{n} \rightarrow S u$ and $S S x_{n} \rightarrow S u$ as $n \rightarrow \infty$.
Moreover $\left\|T S x_{n}-S T x_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$.
Since $S$ and $T$ are compatible and $T x_{n} \rightarrow S x_{n} \rightarrow u$ as $n \rightarrow \infty$, we have $T S x_{n} \rightarrow S u$.
By (1), we have

$$
\begin{aligned}
\|T u-S u\| \leq & \left\|T u-T S x_{n}\right\|+\left\|T S x_{n}-S u\right\| \\
\leq & a\left\|S u-S S x_{n}\right\|+b \max \left\{\|T u-S u\|,\left\|T S x_{n}-S S x_{n}\right\|\right\} \\
+ & c \max \left\{\left\|S u-S S x_{n}\right\|,\|T u-S u\|,\left\|T S x_{n}-S S x_{n}\right\|\right\} \\
+ & d \max \left\{\left\|S u-S S x_{n}\right\|,\|T u-S u\|,\left\|T S x_{n}-S S x_{n}\right\|,\right. \\
& \left.\frac{1}{2}\left(\left\|T S x_{n}-S u\right\|+\left\|T u-S S x_{n}\right\|\right)\right\}+\left\|T S x_{n}-S u\right\|
\end{aligned}
$$

Letting $n \rightarrow \infty$, we obtain

$$
\begin{aligned}
\|T u-S u\| \leq & a\|S u-S u\|+b \max \{\|T u-S u\|,\|S u-S u\|\} \\
+ & c \max \{\|S u-S u\|,\|T u-S u\|,\|S u-S u\|\} \\
+ & d \max \{\|S u-S u\|,\|T u-S u\|,\|S u-S u\|, \\
& \left.\frac{1}{2}(\|S u-S u\|+\|T u-S u\|)\right\}+\|S u-S u\| \\
= & (b+c+d)\|T u-S u\| \\
= & (1-a)\|T u-S u\| .
\end{aligned}
$$

So we have $T u=S u$.
Thus $T S u=S T u$ and $T T u=T S u=S T u$ since $S$ and $T$ are compatible. Furthermore, we have

$$
\begin{aligned}
\|T T u-T u\| \leq & \leq a\|S T u-S u\|+b \max \{\|T T u-S T u\|,\|T u-S u\|\} \\
+ & c \max \{\|S T u-S u\|,\|T T u-S T u\|,\|T u-S u\|\} \\
+ & d \max \{\|S T u-S u\|,\|T T u-S T u\|,\|T u-S u\| \\
& \left.\frac{1}{2}(\|T u-S T u\|+\|T T u-S u\|)\right\} \\
= & (a+c+d)\|T T u-T u\|
\end{aligned}
$$

This leads to $\|T T u-T u\|=0$ since $(a+c+d)<\sqrt{a}$.
Let $z=T u=S u$.
Then $T z=z$ and $S z=S T z=T S z=T z=z$.
Thus $z$ is a unique common fixed point of $T$ and $S$. The uniqueness of $z$ is a consequence of inequality (1). Now, we show that $T$ is continuous at $z$. Let $\left\{y_{n}\right\}$ be a sequence in $C$ such that $y_{n} \rightarrow z$.
Since $S$ is continuous, $S y_{n} \rightarrow S z$, By (1), we have

$$
\left.\begin{array}{rl}
\left\|T y_{n}-T z\right\| \leq & a\left\|S y_{n}-S z\right\|+b \max \left\{\left\|T y_{n}-S y_{n}\right\|,\|T z-S z\|\right\} \\
& +c \max \left\{\left\|S y_{n}-S z\right\|,\left\|T y_{n}-S y_{n}\right\|,\|T z-S z\|\right\} \\
& +d \max \left\{\left\|S y_{n}-S z\right\|\| \| T y_{n}-S y_{n}\| \|,\|T z-S z\|, \frac{1}{2}\left(\left\|T z-S y_{n}\right\|+\left\|T y_{n}-S z\right\|\right)\right\} \\
\leq & a\left\|S y_{n}-S z\right\|+b \max \left\{\left\|T y_{n}-T z\right\|+\left\|T z-S y_{n}\right\|\right\} \\
& \quad+c \max \left\{\left\|S y_{n}-S z\right\|,\left\|T y_{n}-T z\right\|+\left\|T z-S y_{n}\right\|\right\} \\
& \quad+d \max \left\{\left\|S y_{n}-S z\right\|,\left\|T y_{n}-T z\right\|+\left\|T z-S y_{n}\right\|,\|T z-S z\|,\right. \\
\left.\quad \frac{1}{2}\left(\left\|T z-S y_{n}\right\|+\left\|T y_{n}-S z\right\|\right)\right\}
\end{array}\right\}
$$

Therefore, we have $T y_{n} \rightarrow T z$ and so T is continuous at $z$.
This completes the proof.
As a consequences of our Theorem 2.1, we have the following results.

### 2.2Corallary:

Let $S$ and $T$ be compatible mappings of $C$ into itself satisfying the following condition:

$$
\begin{aligned}
\|T x-T y\| \leq & a\|S x-S y\|+b \max \{\|T x-S x\|,\|T y-S y\|\} \\
& +c \max \{\|S x-S y\|,\|T x-S x\|,\|T y-S y\|\}
\end{aligned}
$$

for all $x, y$ in $C$ where $a, b, c>0, a+b+c=1$ and $a+c<\sqrt{a}$ if $S$ is linear and continuous in $C$ and $T(C) \subset S(C)$. Then $T$ and $S$ have a unique common fixed point $z$ in $C$ and $T$ is continuous at $z$.
Corallary 2.2 shows the result of Sharma and Deshpande [16], which obtain by putting $d=0$.
Now if $b=0, c=0$ then we get the following corallary

### 2.3Corallary:

Let $S$ and $T$ be compatible mappings of C into itself satisfying the following condition:

$$
\|T x-T y\| \leq a\|S x-S y\|+(1-a) \max \{\|T x-S x\|,\|T y-S y\|\}
$$

for all $x, y$ in $C, 0<\mathrm{a}<1$, if $S$ is linear and continuous in $C$ and $T(C) \subset S(C)$, Then $T$ and $S$ have a unique common fixed point $z$ in $C$ and $T$ is continuous at $z$.

### 2.4 Remark:

Corallary (2.3) also proves continuity of $T$, so it improves the result of Jungck[9]. if we put $a=b=c=0$ then we get the following result

### 2.5 Corallary:

Let $S$ and $T$ be compatible mappings of $C$ into itself satisfying the following condition:

$$
\|T x-T y\| \leq d \max \left\{\mid S x-S y\|,\| T x-S x\|,\| T y-S y \|, \frac{1}{2}(\|T y-S x\|+\|T x-S y\|)\right\}
$$

for all $x, y$ in $C$ where $0 \leq d<1$, if $S$ is linear and continuous in $C$ and $T(C) \subset S(C)$. Then $T$ and $S$ have a unique common fixed pointz in $C$ and $T$ is continuous at $z$.
To demonstrate the validity of our Theorem 2.1, we have the following example

### 2.6 Example:

Let $X=R$ and $C=[0,1]$ with the usual norm. Consider the mappings $T$ and S on C defined as $T x=\frac{1}{4} x$ and $S x=\frac{1}{2} x$ for all $x \in C$
Then $T(C)=\left[0, \frac{1}{4}\right] \subset S(C)=\left[0, \frac{1}{2}\right]$.
It is easy to see that S is linear and continuous.
Further, $T$ and $S$ are compatible if $\lim _{n \rightarrow \infty} x_{n}=0$, where $\left\{x_{n}\right\}$ is a sequence in $C$ such that $\lim _{n \rightarrow \infty} T x_{n}=\lim _{n \rightarrow \infty} S x_{n}=0$ for some $0 \in C$.

If we take $a=1 / 9, b=13 / 18, c=3 / 18, d=0$ we see that the condition (1) of our Theorem 3.1, is satisfied also we have $a+b+c=1$ and $a+c<\sqrt{a}$.
Thus all the conditions of Theorem 3.1 are satisfied and 0 is the unique common fixed point of $S$ and $T$.

## REFERENCES

1. B. Brosowski., "Fixpunktsatze in der approximation-theory", Mathamatica (Cluj)., 11, (1969), 195.
2. Charbone., "Applications of Fixed Points to Approximation Theory", Jnanabha., 19, (1989), 63.
3. Carbone., "Applications of fixed point theorem", Jnanabha., 22, (1992), 85
4. W.J. (Jr.) Dotson., "Fixed point theorems for non expansive mappings on starshaped Subsets of banach spaces", J. London. Math. Soc., 1 (1972), $408-410$.
5. Fisher, and S. Sessa., "On a fixed point theorem of Gregus", Internet. J. Math. and Math. Sci., 9, (1986), 23.
6. M. Gregus "A fixed point theorem in Banach space", Boll. Um. Math. Ital., (5), 17-A, (1980), 198.
7. T.L. Hicks, and M.D. Humphries, "A note on fixed point theorem", J. Approx. Theory, 34, (1986), 771.
8. Jungck, "Compatible mappings of Fisher and Sessa", Internat, J. Math. and Math., Sci., 9, (1986), 771.
9. G. Jungck, "On a fixed point theorem of Fisher and Sessa, Internal, J. Math and Math., Sci., (1990), 497.
10. G. Jungck and B.E. Rhoades, Fixed point for set valued functions without continuity, Indian J. Pure Appl. Math., 29(3) (1998), $227-238$.
11. G. Meinardus., "Invariagebeilinearen approximation", Arch. Rational. Mech. Anal. 14 (1963), 301.303.
12. R.N. Mukherjee, and V. Verma, "A note on a fixed point theorem of Gregus, Math. Japonica, 33, (1988), 745.
13. H.K. Pathak, Y.J. Cho, and S.M. Kang, "An application of fixed point theorems, Internat, J. Math and Math., Sci., 21, (1998), 467.
14. S.A. Sahab, M.S. Khan, and S. Sess, "A result in best approximation theory", J. Approx. Theory, 55, (1988), 349.
15. S. Sessa., "On a weak commutativity conditions in fixed point consideration, Publ. Inst. Math. 46, (1982), 149.
16. Sushil Sharma, and Bhavna Deshpande., "Fixed point theorem and its application to best approximation theory", Bull. Cal, Soc., 93, (2) (2001), 155-166.
17. Sushil Sharma and Bhavana Deshpande., "Fixed point theorem for weakly compatible mappings and its application to best approximation theory", Journal of the Indian Math. Soc., Vol. 69, Nos. 1-4 (2002), 161-171.
18. M.L. Singh., "Application of fixed points to approximation theory", Proc. Approximation Theory and Applications., Pitman, London 198. (1985).
19. S.P. Singh., "An applicationof a fixed point theorem to approximation theory, J. Approx. Theory., 25, 89 (1979).
20. P.V. Subrahmanyam., "An application of a fixed point theorem to best approximations", J. Approximation Theory., 20, 165 (1977).

[^0]:    ${ }^{1 *}$ Department of Mathematics, Govt. Dungar College, Bikaner (Raj.)-334003, Email: neelmanigupta04@gmail.com

