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Spaces

xA K. Goyal, ?Neelmani Gupta

Abstract

Motivated and inspired by the result of Imdad, Ahamad and Khan [4] and contractive condition studied by Nesic [8], we
have proved some common fixed point theorems for asymptotically commuting mappings in uniformly convex Banach
spaces. Our work generalizes some known results with respect to their mappings and inequality conditions.
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1. INTRODUCTION AND PRELIMINARIES :
Let R+ be the set of all non-negative reals and H; be the family of all functions from Ri to R+ for each positive integer
i, which are upper semi continuous and non decreasing in each coordinate variable.

Now, the following definitions are borrowed by several authors the weak-commutativity condition introduced by Sessa
[9] in metric space, which can be described in normed linear space stated as

1.1 Definition :
Let A and S be two self mappings of a normed linear space X. Then (A, S) is said to by weakly commuting pair on X if

[SAx— ASY| < |Ax — Sx| forall x e X

obviously a commuting pair is weakly commuting but its converse need not be true as is evident from the following
example.

1.2 Example :
Let X =[0,1] be the reals with Euclidean norm AX = and SX = forany X € X.
4+ X 2+X
X X 2x°
|SAX — ASX| = - =
8+3x 8+5x (8+3x)8+5x)
2X =[Sx— Ax|

P
(2+x)4+x)

So the pair (A, S) is weakly commuting but it is not commuting SAX = ASX .
The definition of compatible maps was given by Jungck [7], which can be stated as

1.3 Definition :
Let A and S be two self mappings of normed linear space X. Then (A, S) is said to be asymptotically or preorbitally
commuting (also called compatible (Jungck [12]) its.

|im||ASXn — SAX, || =0 whenever {Xn} is a sequence in X such that
n
lim Ax,, = lim Sx, = u for some u in X.
n n

The following example also supports the observation1.4 Example :
Let X = [O,oo), AX = 2x2, 5x = 3x? and d the absolute value metric on X then A and S are not weakly commuting.

However, for X, = an,d(AXn , SXn)—) 0,as N— o0 and
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also
d(ASx,,SAx, )—0,as n—w

evidently a weakly commuting pair is always asymptotically commuting but the converse is not true in general.
In (1974) Iscki [5] stated as

1.5 Definition :
The modulus of convexity of a Banach space E is a function O - (0,2] - (0,1]defined by

: 1
ale)=in t{1-cs vy < <[yl -2x-ze}

It is well known (Iscki [5]) that if E is uniformly convex then O is strictly increasing, Lime_)oé‘(e)zo and
5(2) =1. Let 77 denotes the inverse of ¢ , then we note that n(t)< 2 fort<1.

We shall need the following Lemma of Goebel et al. [2].

1.6 Lemma:
Let E be a uniformly convex Banach space and By the closed ball in E centered at origin with radius > 0, if

X, X, X3 € B,

1 [d
1%, = X, | =[x, = x5 = d >0 and |x, > {1—55(—)}/

v
1 [d
then ||X, — X, < n{l—;&(;ﬂ %, =%, |

2 MAIN RESULTS

Let R* be the set of non-negative real numbers, and let F:R™ — R"be mapping such that F (0) = 0 and F is
continuous at 0.

2.1 Theorem :
Let E be a uniformly convex Banach space and K, a non-empty closed subset of E. Let {S,1} and {T,J} be two
asymptotically commuting pairs of self-mappings of K such that for all x, y € K.

[$x=Ty[|" < 6 1x— 3y [1x— S [ Iy] |9y =Ty [1x— 54
[9y =], [1x=Ty]l|1x=Sx]. 3y = Sx{|3y ~Ty]) D)
+F (min {9y x| 9y ~ Ty, | 1x - S Ty}

where ¢ € H.and forall t >0,
(i) 4(t,t,t,01,0)< S t,and (t,1,1,0,0)< S t

where =1 for a = 2 and ,3<1f0ra<2;
(i) ¢(0,0,0,0,0) =0;
(iii) 1 and J are continuous S(K)  J (K) and T(K) < I(K) ,

Then (a) S, T,I and J have a unique common fixed point z in K and

(b) forany X, € K the sequence generated by

SXyn = Iy s WXy = Xy, N=012,........

converges strongly to z.

Proof : Choose an arbitrary point X in K. As, S(K) < J(K), we can choose a point x; in K such that Sxo = Jxi. Also

since T(K) I (K), choose a another point x, in K such that Tx; = Ixz. In this way, choose Xan, Xan+1, X2n+2 SUch that Sxon =
JIXan+1 AN TXans1 = IXons2 forn=0,1,2,...
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Thus we get the sequence

{SX0, TXy, SXy e T 12 Koy Thppgeveef e (2)

Let d,, =||SX2n —TX,,.,,||and

Ay = ||TX2n+l - SX2n+z” , then

using inequality (i)
we have,

5%, —Tx2n+l||2
< (|10 = M| [Xan = SXan s [1X2n = IXamaa]| [IXanss = X e
11Xz = SXan | [ I%ans = TXanaa s [ Xan = TXamaa]| [1X2n = SXan]
19%2141 = SXan|| [9Xanss = TXopua)
+F (min ﬂ|\]x2n+1 = X |l [[9%zma = Tt Xan = X+ 120 — Sx2n||})

which implies
d22n < ¢(d 22n—1’ d2n—1dZn ’ dZn—len ’ (dZn—l + d2n }jZn—PO)
+ F(mln{o’ d2n ! (dZn—l + d2n )’ d2n—1})
or dzzn < ¢(d22n—1’ d2n—1d2n ) d2n—1d2n 14 dZn—1’0)+ F (0)
or d22n < ¢(d 22n—1’ o PSR DAY PRI o PO d2n—1’0) ..(3)

Similarly, we obtain
||SX2n+2 - Tx2n+1||2

<& (a2 = Pansa| | Xanez = SXanva s [Xanrze = amaal| [FXone = TXania s
12002 = SXanea | [9Xanss = TXamaalh [Xanez = TXanaa| | Xane2 = SXona|
[9%n2 =S¥z | [ Xenss =X )
+F (min ﬂ|~]in+1 = X2 [Xans = TXanea s [ Xznsz = TXanaa s Xanez = SXona ||})
0203 < H(05y 0y 02, 0.0, + Uy o)

+ F(min{(d2n + d2n+1)’d2n ’O’d2n+l})

or d22n+1 < ¢(d2nd2n+1’ dzzn ) dan2n+1’01 a’dzn )"’ F (0)

or d22n+lS¢(d2nd2n+1’d22n’d2nd2n+11o’a’d2n) ... (4)

Suppose  for  some nd,. ,>d, >d, ,,then d, ,+d, =ad, with some l<a<2and

d,, +d,,,, =a'd,,, with some 1< " < 2 since in each coordinate, variable ¢ is non decreasing.
2 2 2 2 2
{dZn < ¢(d2n 1 dZn ’ d2n 'ad2n 70)
2 2 2 2 2
2n+l S ¢(d2n+l’ d2n+1’ d2n+l’0’ ad2n+1)

In both the cases by (i), we have

... (5)

di, < i, 2 < f<L,

DOI: https://doi.org/10.53555/VV24110/400083 8299



International Journal of Psychosocial Rehabilitation, Vol. 24, Issue 10, 2020
ISSN: 1475-7192

1

2 14 2

d2n+1 Sﬁd2n+1’§<ﬂ’ <1:
which is contradiction. Therefore,

d,, <d,,, e, d, >d,,, n=12..

suppose further that |im{d2n}= Iim{dZM}:d >0,
n n

we claim that d=0 and if not we can say d> 0, without loss of generality.

We can postulate that 0 K and 0 < " =sup ||d2n ||

Let, 7 € R, be chosen in such a way that

y'<y and }/{1—15[9)} <y,
2 \y

we can find a sequence {77i }, i=0,1,2....... of positive integers such that for i.e. j € {ﬂi }

dzjz{l—lg(ﬂﬂ while for n>n,, dzns;/
2 \y

since dZW1 > dz,7j >d >0forevery i=012,....

It follows from Lemma 1.6, it follows that for any | € {ﬂi}

e

Sn(%jdzjl:aldzj -1 ... (6)

!

where a; =77 (Lj < 2 because of uniform convexity.

Then we have by (3), (4), (5) and (6)
d221' S¢(d22j—l’d22j—l’d22j—1’a1d22j—1’0)

d?., <gld?,d2,d2,0,a,d?2) -0
2j+1—¢ 2j2 Uy, Us5,Y, Uy,
Thus in either case d,; < B,d,; ; and d,;,; < Bd,;for some 3, <1.

We observed that ,Bl is independent of j and so, as j — 0, we have d < ﬂld ,a evident contradiction implying at d =
0.

It follows therefore, as proved in (Husain and Sehgal [3] that the sequence (2) is cauchy sequence. But K is closed
subset of E, therefore sequence (2) converges to a point z in K, hence the sequence {Sxzn} = {Ixzn+1} and {Txen1} =

{Ix2n} which are subsequences of (1) also converges to the point z.

Since | is continuous then sequence 1?xz,and ISxznconverges to 1z. since Ilmn% SX,, = Ilmn% IX,, =7 and (S,1) is

asymptotically commuting, then

Lim, ., [S1X,, — 15%,,| =0
which implies that SIX,, — 1z
Taking X=1X,,, Y =X,,,;, in condition (1)
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”Slxzn _TX2n+1||2
< ¢(”I 2X2n - ‘]X2n+1

2
HI Xy — SIX,,

2 2
I Xon — SIXZn I Xon — ‘]X2n+1

||‘]X2n+l _TX2n+1||’

2
I “X,, —SIX,,

||‘]X2n+1 _TX2n+l||1

2
‘ I Xon _TX2n+1

||‘JX2n+1 - SIXZn” ||‘]X2n+1 _TX2n+l||)+ F(min{“‘]XZnA - SIX2n+1||’

)

||‘]X2n+l _TX2n+1||’ I 2in _TX2n+l

2
‘I Xon — SIX,,

Taking lim n — o0, we have
1z~ < g1z~ 2| |1z~ 12}, 1z~ 7 |2 ~ 2} |1z~ 12] |z ~ 2,
[1z-2| |1z~ 12}, |2~ 12] |2~ ] )
+F(min{z - 1z 2~ 2| iz ~12]. )1z~ 2]}
o [1z—7° <$(0,0,0,00)+ F(min{|z-12],0,0,]1z- | })
o |iz—2|" <0+F(0)

which implies that 12=2.

Since J in continuous and (T,J) in asymptotically commuting. So the sequence J 2X2n+1 —Jz, JTX,,,, > JZ.

Since lim, TX,.., =lim___JX, ., =Z.while (T,J) is asymptotically commuting then

N0
lim,.,,, [TMons = I T, =0,
which implies that TJX,,,,, — Jz
Now, putting X =X,,, Y =JX,,;, in condition (1), we have

2
”szn _TJX2n+1

2
< ¢ (Hlxzn -J Xonu

%3, = SXaa |

2
Iin -J Xonu

2
“] Xonss = T9Xon.

1%2 = SXa |,

J 2X2n+1 _TJX2n+1 1|||X2n _TJX2n+1|| ”Iin - SX2n||7

)

2
“] Xonag = T9Xp0,1

2 2
H‘] X2n+1_SX2n J Xons _T‘]XZn+1

+ F(min{[ 97,0, — %, | 1% = S [ 10w =TI}
2= 32" < (|l2—32] |2~ 2|, |2 - 32] |9z - 32|, |} - 2] | 32— 32,
|2—32] |}z - 2], |9z~ 2] |92 32])
+ F(min {3z 2], 32— 32|, |2~ 2], |z - 32|}
or  [z-37 <$(0,0,0,00)+F(min{|Jz-2],0,0,|z - Iz])
or ||Z—JZ||2 <0+ F(0)

giving there by z = Jz which impliesz=Jz= 1z
Taking X = z, y = Xans+1, in condition (1), we have
2
[SZ = X,

< ¢(|| 1Z — 3% 4| |12 = Sz, |12 = IXna || [ IXonis = TXonaa|ls][12 — SZ|
||JX2n+1 _TX2n+1||-|||Z _TX2n+l|| ”IZ - SZ||7||JX2n+1 - SZ” ||‘JX2n+1 _TX2n+1||)
+ F(min{||\]x2n+1 —SZ||, [IXzns = TXona||, 12 = Sz, [[1z = TX,4| })
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Taking lIMN —> 00 | we have
or |Sz— z||2 <¢$(0,0,0,0,0) + F(min {||z -S7,|z—-z|,|1z— Sz, |1z - z||})
o [Sz—z|" <0+F(0)

yielding thereby Sz = z.
Now, taking X = Xzn, y = z, in condition (1), we have

|SX,, T2

< ¢(“ X, — 37| [ 150 = SXau || [1Xen = 37| |92 =T2z], [ 1%z = SXoa |
[92-T2} g, ~T2 [~ | 925, [92-T2])

e (minf]0z- 5, 32Tzl i, - S, I, 72| )

Taking limn — oo | we have
|27z}
<z~ 7|lz~2]. |22 |2~ T2, |2~ 2]}~ T2]. |2 - T2] |2 -2,
|22}z T[)+ F(min{z - 2] |2 Tz], |2 - 2]} Tz}

o [z-Tz| <$(0,0,0,0,0)+F(min{0,|z-Tz| 0,|z-Tz[})

o 2Tz <0+F(0)

yielding thereby z = Tz which implies z = Sz = Tz. Thus we have proved that z = Sz = Iz = Tz = Jz, So z is the common
fixed point of S, I, T and J. This completes the proof.

If we take F(t) =0 and forallt € R™, in Theorem 2.1, we obtain the following result.

2.2 Corallary :
Let E be uniformly convex Banach space and K a non empty closed subset of E. Let {S,I} and {T, J} be two

asymptotically commuting pairs of self mappings of K such that for all x, y€ K .
[sx =Ty < 4(]1x— 3y i~ Sx]. |1~ y] |3y~ Ty]. 1~ 5

9y =Tyl x=Ty] [ix—Sx],[3y —Sx] |3y =Ty])

where ¢ € Hand for all t> 0,

(i) ¢(t,t,t,at,0)£ Pt and ¢(t,t,t,0,at)£,3t where f=1for @ =2 and <1 for 2 <2;
ai) ¢(0,0,0,0,0) =0;

(iii) 1 and J are continuous S(K)c J (K) and T(K)C I (K)

Then (a) S, T, I and J have a unique common fixed point z in K and.

(b) forany X, € K the sequence generated by

SXon = o1 TXony = Xonspy  N=012...

converges strongly to z.
the above corallary (2.2) shows the result of Imdad, Ahmad and Khan [4].
The following theorem also generalizes the result of Som [10] and Imdad, Ahmad and Khan [4].

2.3 Theorem :
Let E be uniformly convex Banach space and K a non empty closed subset of E. Let S,T,I and J be four self mapping of

K such that for all x, ye K .
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fsi-Ty]” < x5 2y Tyl Jox-Ty] oy ~ -5

[1x=Ty]. |3y x| 3y ~Ty] )
+F (min {Jay - x| 9y ~Ty} [ x— ¢ | 1x-Ty]))

where ¢ € H, and for all t> 0,

(i) ¢(t,0, at,O)S,Btand ¢(t,0,0, at)S,Bt where f=1for @ =2 and S <1 for @ <2;

(i) ¢#(0,t,0,0) <t,¢(0,0,0,0)=0;

(i) S(K)c J(K) and T(K)c 1(K);

(iv) I is continuous, (S,1) is asymptotically commuting and (T,J) is weakly commuting pair in K or J is continuous, (T,J)

is asymptotically commuting and (S,1) is weakly commuting pair in K. Then
(@) S, T, I and J have a unique common fixed point z in K and.

(b) forany X, € K the sequence generated by
SXon =I5 00 WXy = X, N=012..
converges strongly to z.

Proof : It may be completed on the lines of proof of Theorem 2.1
If we take | =Jand F () =0, forall t € R™ in Theorem 2.3, we get the following result of Som [10].

2.4 Corallary :
Let E be a uniformly convex Banach space and K a non-empty closed subset of E. Let S, T and | be three self mappings

of K such that for all x, ye K .
[5x=Ty1" < lJix—5x] [ty Tyl Jix=Ty] Jy S, x5

=Ty [ty -5 [ty ~Ty])
where ¢ € H, and for all t> 0
() #(t,0,at,0)< St and ¢(t,0,0,at)< At
where f=1for =2 and S <1 for @ <2,
(i) Alt,t,t,t)<t;
(iii) 1'is continuous S(K) UT(K) < 1 (K)

(iv) {S, 1} and {T, I} are asymptotically commuting pairs on K. Then there exists a point U € K such that
(a) u is the unique common fixed point of S,T and I;

(b) for any X, € K, the sequence {Ix.} defined by
IXp0.1 = S0, IX2n+2 =
Finally, we furnish the example to discuss the validity of foregoing Theorem 2.1

TX,,.1, N=012... converges strongly to u.

2.5 Example : Let E = K [0, 1] and define

XZ

2
ST1J:KoKassx="" Tx=% 3x=%and 1x=3X
3 4 2 4
Note that S(K) < J(K)

1 1
— S(K) :{o,g}c{o,ﬂ = J(K)

Let g(t,,t,,t,,t,,t.) = %('[l +t, +t, +t, +1,)

Then above function satisfy condition (4.1) for all x, y in [0,1]. Clearly 0 is the unique fixed point of S,T,I and J. taking

F@=0forallteR"
Next example proof the validity of corallary (2.4)
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2.6 Example :

. . o X? x° 3x
Let K = [0,1]. Define the mappings S, T and | of K into itself by SX = T’TX = ? and Ix= E

6
Let o(t;,t,,t,,t,) = E(tl +t, +t,+t,) then all the conditions of corallary (2.4) are satisfied and 0 is the unique

common fixed point of S, T and I.
Next example proof the validity of Theorem 2.3

2.7 Example :

2 2
, . S X X 3X X
Let K = [0,1]. Define the mappings S, T, I and J of K into itself by SX = ?,TX = 7 IX= v and Jx= 2

1
If we set o@(t,,t,,t;,1,) :Z(tl +t, +t,+t,) then all the conditions of Theorem 2.3 are satisfied for all
X, Y€ [0,1]. Clearly 0 is the unique common fixed point of S, T, I and J.
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