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Abstract 

Motivated and inspired by the result of Imdad, Ahamad and Khan [4] and contractive condition studied by Nesic [8], we 

have proved some common fixed point theorems for asymptotically commuting mappings in uniformly convex Banach 

spaces. Our work generalizes some known results with respect to their mappings and inequality conditions. 
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1. INTRODUCTION AND PRELIMINARIES : 

Let R+ be the set of all non-negative reals and Hi be the family of all functions from 
iR+

 to +R for each positive integer 

i, which are upper semi continuous and non decreasing in each coordinate variable. 

 

Now, the following definitions are borrowed by several authors the weak-commutativity condition introduced by Sessa 

[9] in metric space, which can be described in normed linear space stated as 

 

1.1  Definition : 

Let A and S be two self mappings of a normed linear space X. Then (A, S) is said to by weakly commuting pair on X if 

XxallforSxAxASxSAx −−  

obviously a commuting pair is weakly commuting but its converse need not be true as is evident from the following 

example. 

 

1.2  Example : 

Let ]1,0[=X  be the reals with Euclidean norm 
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So the pair (A, S) is weakly commuting but it is not commuting ASxSAx  . 

The definition of compatible maps was given by Jungck [7], which can be stated as 

 

1.3  Definition : 

Let A and S be two self mappings of normed linear space X. Then (A, S) is said to be asymptotically or preorbitally 

commuting (also called compatible (Jungck [12]) its. 

0lim =− nn
n

SAxASx   whenever  nx  is a sequence in X such that 

uSxAx n
n

n
n

== limlim for some u in X. 

The following example also supports the observation1.4  Example : 

 )= ,0XLet , 
22 35,2 xxxAx ==  and d the absolute value metric on X then A and S are not weakly commuting. 

However, for ( ) →→= − nasSxAxdx nn

n

n ,0,,2  and 
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also 

( ) →→ nasSAxASxd nn ,0,  

evidently a weakly commuting pair is always asymptotically commuting but the converse is not true in general. 

In (1974) Iscki [5] stated as 

 

1.5  Definition : 

The modulus of convexity of a Banach space E is a function (  ( 1,02,0: → defined by 
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It is well known (Iscki [5]) that if E is uniformly convex then   is strictly increasing, ( ) 00 =→ Lim  and 

( ) 12 = . Let   denotes the inverse of  , then we note that ( ) 12  tfort . 

We shall need the following Lemma of Goebel et al. [2].  

 

1.6  Lemma :  

Let E be a uniformly convex Banach space and B  the closed ball in E centered at origin with radius 0 , if 
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2 MAIN RESULTS 

Let R+ be the set of non-negative real numbers, and let 
++ → RRF : be mapping such that F (0) = 0 and F is 

continuous at 0. 

 

2.1  Theorem : 

Let E be a uniformly convex Banach space and K, a non-empty closed subset of E. Let {S,I} and {T,J} be two 

asymptotically commuting pairs of self-mappings of K such that for all x, y K. 

 ( )TyIxSxIxTyJySxJyF

TyJySxJySxIxTyIxTyJy

SxIxTyJyJyIxSxIxJyIxTySx

−−−−+

−−−−−

−−−−−−

,,,min

),,

,,(
2



  ….(1) 

 

where 5H and for all 0t , 

 (i) ( ) ,0,,,, ttttt   and ( ) ttttt  ,0,,,  

 

where  = 1 for α = 2 and  < 1 for α< 2 ; 

(ii)  (0,0,0,0,0) = 0; 

(iii) I and J are continuous S(K)  J (K) and T(K)  I(K) , 

 

Then (a) S,T,I and J have a unique common fixed point z in K and 

(b) for any Kx 0 the sequence generated by 

,........2,1,0,,
2212122 ===

+++
nIxTxJxSx nnnn  

converges strongly to z. 

 

Proof : Choose an arbitrary point x0 in K.  As,  S(K)  J(K), we can choose a point x1 in K such that Sx0 = Jx1. Also 

since T(K)  I (K), choose a another point x2 in K such that Tx1 = Ix2. In this way, choose x2n, x2n+1, x2n+2 such that Sx2n = 

Jx2n+1 and Tx2n+1 = Ix2n+2 for n = 0,1,2,…  
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Thus we get the sequence 

 ......,,.....,, 12212210 +− nnn TxSxTxSxTxSx           … (2) 

Let       1222 +−= nnn TxSxd and 

221212 +++ −= nnn SxTxd , then 

 

using inequality (i) 

we have, 

 ( )nnnnnnnn

nnnn

nnnnnnnn

nnnnnnnn

nn

SxIxTxIxTxJxSxJxF

TxJxSxJx

SxIxTxIxTxJxSxIx

TxJxJxIxSxIxJxIx

TxSx

221221212212

1212212

22122121222

121212222122

2

122

,,,min

)

,,

,,(

−−−−+

−−

−−−−

−−−−

−

++++

+++

+++

++++

+



 

 

which implies 
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Similarly, we obtain  
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or ( )nnnnnnn ddddddd 2122
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Suppose for some n ,12212 −+  nnn ddd then nnn ddd 2212 =+− with some 21  and 

12

1

122 ++ =+ nnn ddd  with some 21 1   since in each coordinate, variable  is non decreasing. 
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In both the cases by (i), we have 

1
2

1
,2

2

2

2   nn dd , 
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1
2

1
,2

12

2

12  ++  nn dd , 

which is contradiction. Therefore, 

....2,1,.,. 122122 = +− nddeidd nnnn  

suppose further that     ,0limlim 122 == + ddd n
n

n
n

 

we claim that d=0 and if not we can say d> 0, without loss of generality. 

 

We can postulate that 0K and  0  = sup nd 2  

Let, +R  be chosen in such a way that 
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we can find a sequence  i , i = 0,1,2……. of positive integers such that for i.e. j   i  
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It follows from Lemma 1.6, it follows that for any  ij   
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Thus in either case 1212 − jj dd   and jj dd 2112 + for some 11  . 

 

We observed that 1  is independent of j and so, as →j , we have ,1dd  a evident contradiction implying at d = 

0. 

 

It follows therefore, as proved in (Husain and Sehgal [3] that the sequence (2) is cauchy sequence. But K is closed 

subset of E, therefore sequence (2) converges to a point z in K, hence the sequence {Sx2n} = {Jx2n+1} and {Tx2n-1} = 

{Ix2n} which are subsequences of (1) also converges to the point z. 

Since I is continuous then sequence I2x2nand ISx2nconverges to Iz. since zIxSx nnnn == →→ 22 limlim  and (S,I) is 

asymptotically commuting, then  

022 =−→ nnn ISxSIxLim  

which implies that IzSIx n →2  

Taking 122 , +== nn xyIxx , in condition (1) 
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Taking →nlim , we have 
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which implies that zIz = . 

 

Since J in continuous and (T,J) in asymptotically commuting. So the sequence JzxJ n →+12

2
, JzJTx n →+12 .  

Since zJxTx nnnn == +→+→ 1212 limlim . while (T,J) is asymptotically commuting then 
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giving there by z = Jz which implies z = Jz = Iz 

Taking x = z, y = x2n+1, in condition (1), we have 
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Taking →nlim , we have 
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yielding thereby Sz = z. 

Now, taking  x = x2n, y = z, in condition (1), we have 
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Taking →nlim , we have 
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yielding thereby z = Tz which implies z = Sz = Tz. Thus we have proved that z = Sz = Iz = Tz = Jz, So z is the common 

fixed point of S, I, T and J. This completes the proof. 

If we take F(t) = 0 and for all t 
+R , in Theorem 2.1, we obtain the following result. 

 

2.2  Corallary : 

Let E be uniformly convex Banach space and K a non empty closed subset of E. Let {S,I} and {T, J} be two 

asymptotically commuting pairs of self mappings of K such that for all x, y K . 

),,

,,(
2

TyJySxJySxIxTyIxTyJy

SxIxTyJyJyIxSxIxJyIxTySx

−−−−−

−−−−−− 
 

 

where 5H and for all t> 0, 

(i) ( ) ttttt  0,,,, and ( ) ttttt  ,0,,,  where 1=  for 2=  and 1  for 2 ; 

(ii) ;0)0,0,0,0,0( =  

(iii) I and J are continuous ( ) ( )KJKS   and ( ) ( )KIKT   

Then (a) S, T, I and J have a unique common fixed point z in K and. 

(b) for any Kx 0 the sequence generated by 

...2,1,0,, 2212122 === +++
nIxTxJxSx nnnn  

converges strongly to z. 

the above corallary (2.2) shows the result of Imdad, Ahmad and Khan [4]. 

The following theorem also generalizes the result of Som [10] and Imdad, Ahmad and Khan [4]. 

 

2.3  Theorem : 

Let E be uniformly convex Banach space and K a non empty closed subset of E. Let S,T,I and J be four self mapping of 

K such that for all x, y K . 
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where 4H and for all t> 0, 

(i) ( ) ttt  0,,0, and ( ) ttt  ,0,0,  where 1=  for 2=  and 1  for 2 ; 

(ii) ;0)0,0,0,0(,)0,0,,0( =  tt  

(iii) ( ) ( )KJKS   and ( ) ( )KIKT  ; 

(iv) I is continuous, (S,I) is asymptotically commuting and (T,J) is weakly commuting pair in K or J is continuous, (T,J) 

is asymptotically commuting and (S,I) is weakly commuting pair in K. Then  

(a) S, T, I and J have a unique common fixed point z in K and. 

(b) for any Kx 0 the sequence generated by 

...2,1,0,, 2212122 === +++
nIxTxJxSx nnnn  

converges strongly to z.  

 

Proof : It may be completed on the lines of proof of Theorem 2.1 

If we take I = J and F (t) = 0, for all 
+Rt  in Theorem 2.3, we get the following result of Som [10]. 

 

2.4  Corallary :  

Let E be a uniformly convex Banach space and K a non-empty closed subset of E. Let S, T and I be three self mappings 

of K such that for all x, y K . 
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2
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    where 1=  for 2=  and 1  for ;2  

(ii) ( ) ;,,, ttttt   

(iii) I is continuous )()()( KIKTKS   

(iv) {S, I} and {T, I} are asymptotically commuting pairs on K. Then there exists a point Ku such that 

(a) u is the unique common fixed point of S,T and I; 

(b) for any Kx 0 , the sequence {Ixn} defined by  

...2,1,0,, 1222212 === +++ nTxIxSxIx nnnn  converges strongly to u. 

Finally, we furnish the example to discuss the validity of foregoing Theorem 2.1 

 

2.5  Example : Let E = K [0, 1] and define 
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Then above function satisfy condition (4.1) for all x, y in [0,1]. Clearly 0 is the unique fixed point of S,T,I and J. taking 

F (t) = 0 for all 
+Rt  

Next example proof the validity of corallary (2.4) 
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2.6  Example : 

Let K = [0,1]. Define the mappings S, T and I of K into itself by ,
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Ixand

x
Tx

x
Sx ===  

)(
25

6
),,,( 43214321 ttttttttLet +++=  then all the conditions of corallary (2.4) are satisfied and 0 is the unique 

common fixed point of S, T and I. 

Next example proof the validity of Theorem 2.3 

 

2.7 Example : 

Let K = [0,1]. Define the mappings S, T, I and J of K into itself by 
24
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If we set )(
4

1
),,,( 43214321 tttttttt +++=  then all the conditions of Theorem 2.3 are satisfied for all 

]1,0[, yx . Clearly 0 is the unique common fixed point of S, T , I and J. 
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