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Derivation of new Degrees for Best (Co)

convex and Unconstrained Polynomial

Approximation in I[,g’ﬁ space: |

'Malik Saad Al-Muhja, 2Habibulla Akhadkulov, *Nazihah Ahmad

ABSTRACT

The purpose of this work is to present the derivation and an estimate of the degrees of the best
approximation based on convex, coconvex and unconstrained polynomials, and discuss some applications. We

simplify the term convex and coconvex polynomial as (co)convex polynomial herein.
KEYWORDS: unconstrained polynomials, coconvex, convex

I. Introduction

The (co)convex and unconstrained polynomial approximation (COCUNP approximation) is one of the
important estimates in approximation theory with Jacobi weights that Kopotun has recently introduced (see [11,
12, 13, 16, 17, 20]), and that are defined as

Wop() = (1 +0%(1—x)*,

and

]LZ’B = {f: [-1,1] - R: ||wa‘5 f||p <o,and 0 <p < 00}.

]LZ’B space expansions will be used in the derivation of the degrees of the best unconstrained polynomial
(UNP) approximation. Then the resulting degree after substitution will be rewriting the polynomial to (co)convex
polynomial (COCP). Then, find the degree of the best coconvex polynomial (CCP) approximation which indicates
two of inflection points at least and with one inflection point by using ]LZ’B space, which will be explained in this

paper. In fact, we also need the nomenclatures: unconstrained and convex polynomial (UNCP) approximation and
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Ditzian-Totik modulus of smoothness (DTMS). Next, let AX(f, x) be the kth symmetric difference of f is given
[8] by

2i—k

AL (f,x) = Z ( Def x+( )h) x+2e[-1,1]

,  otherwise.
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Definition 1.1 [18] The space L,([—1,1]), 0 < p < oo, denotes the space of all measurable functions f

on [—1,1], such that

(/.1 5
(f If(x)lpdx> <w, 0<p<ow

|
1l o = 4
esssuplf @l p=oo.
x€[-1,1
Let|l.ll, =l -||L,,[—1,1]: 0 <p<oand¢(x) =v1—x2 Then, DTMS of a function f € L,[-1,1], is
defined [7] by
Wl (f,0), = sup [[¢7 8k, (1,01, kr€N,.

Also, the kth usually modulus of smoothness of f € L,[—1,1] is defined [8] by
w(f,8,[=1,1D), = sup [[Af(f, 0], §>0,p < oo.
0<hsé

Denote by AC;,.(—1,1) and AC[—1,1] the set of functions whose are locally absolutely continuous on

(—1,1) and absolutely continuous on [—1,1] respectively. Now, we will need to accept the following:

Definition 1.2 [21] Let

(—_1 ) ifp <
) m ) l m,
D p
[0, ), ifp = oo,

B €=

Define

Lyf = {f: [-1,1] > R: fTD € AC,p.(-1,1),1 < p < 0 and ||z f<r>||p < oo}

and for convenience denote Lj s = Lo
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Definition 1.3 [25] Let f € C be a continuous function on [—1,1], 7 = 1 and ¢p(x) = V1 — x2. Denote
by €™ the space of continuous functions which possess an absolutely continuous (r — 1)st derivative in [—1,1]

such that £@ is almost everywhere bounded:; that is,
€W ={feC:frVeAc[-11]and ||f7| < }.

Denote by €™ the space of continuous functions which possess a locally absolutely continuous (r — 1)st
derivative in (—1,1), such that

€ ={f eC:f" D € AC,.(—1,1) and ||¢p"f || < oo}.

Now, we see appropriate to mention a concepts (co)convex and unconstrained polynomials.

Definition 1.4 [26] A subset X of R™ is convex set if [x,y] € X, whenever x,y € X. Equivalently, X is

convex if
(1-MDx+AyeX, forall x,y € Xand A € [0,1].
The function f is called convex of X if
FA=Dx+y) < A= Df ) + Af (), forall x,y € X and A € [0,1].

Definition 1.5 [22] Let 7, be the space of all algebraic polynomials of degree < n — 1, and A® be the
set of all convex functions on [—1,1]. For f € C([—1,1])NA® , the degree of best convex polynomial

approximation of £ is

EP(F) = inf {|If - pall, Py € 7,NAP}.

Definition 1.6 [9] Let Y; = {y;};-,, s € N be a partition of [-1,1], that is, a collection of s fixed points
y; such that

YVor1 = 1<y <<y <1 =y,

and let A®)(Y,) be the set of continuous functions on [—1,1] that are convex downwards on the segment
[yi+1, ;] if i is even and convex upwards on the same segment if i is odd. The functions from A®)(Y,) are called

coconvex.

Definition 1.7 [14] Let A®(Y,) be the collection of all functions f in C([—1,1]) that change convexity
at the points of the set Y;, and are convex in [y,, 1]. The degree of best CCP approximation of f is defined by

EX(f,Y,) = inf {|If — pll,p € mNAP (Y}

Definition 1.8 [4] A domain ID of convex polynomial p,, of A® is a subset of X and X € R, satisfying

the following properties:

1) D € XV, where
KN = {D:D is a compact subset of X}
is the class of all domain of convex polynomial,

2) there is the point t € X/D, such that
lpn (O] > sup {Ip, (x)|:x € D}, and
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3) there is the function £ of A®, such that

1

If = pall < 5 (77.3),

Definition 1.9 [4] A domain D of coconvex polynomial p,, of A®(Y,) is a subset of X and X € R,

satisfying the following properties:
1) D € K N(Y,), where

KN (Y,) = {ID: D is a compact subset ofX,}

and p, changes convexity at D
is the class of all domain of coconvex polynomial,

2) y,'s are inflection points, such that
POl <5, i=1,..,5,and
3) there is the function £ of A®(Y,), such that
If = pall < S0f, (F73)-
Definition 1.10 [19] The polynomial p,, isa constrained polynomial, if p,, is shape preserving of function

f, except that been UNP.

DeVore (1977) introduced estimates for the approximation of monotone functions by monotone

polynomials (see [6]). Also, he given results of the order as for the unconstrained approximation by polynomials.

In 1992, DeVore et al. [5] proved for f € L,,, 0 < p < 1, and k € N, there exists an algebraic polynomial

py, Of degree < n such that

1
If = pall, < Ca? (f,;) ,

P
for x € I, where w,‘f is the usual DTMS.

In 1995, Kopotun [19] investigated the notion of degree of the best UNCP approximation presented in

terms of a)fl. This approach of approximation does not depend on A and 0 < A < 1. In 1995, he proved uniform

estimates for monotone and convex approximation of functions by algebraic polynomials in terms of the usual

DTMS w?.
Definition 1.11 [27] The partition T,, = {tj};lzo , where
M o< i <
e freoli) w0221
-1, if j <0,
and ¢;'s as the knots of Chebyshev partition.

Definition 1.12 [23] Let X, ,, be the collection of all continuous piecewise polynomials of degree k — 1,
on the Chebyshev partition and let £}, ,, € %, ,, be the subset of all continuously differentiable such functions. That

is, if p € X ,,, then

plI} = p}; j: 1; o,

Received: 18 Apr 2020 | Revised: 09 May 2020 | Accepted: 02 Jun 2020 2869



International Journal of Psychosocial Rehabilitation, Vol. 24, Issue 10, 2020
ISSN: 1475-7192

where p; € m,_,, the collection of polynomials of degree < k — 1, and
pi(x%) =pjsa(x) i =1.,n -1,
and if p € £}, , then in addition,
p]’-(xj) = p]’-+1(xj), j=1,..,n-1
The following theorems indicate several cases of different for inflection points.

Theorem 1.13 [10] (s = 2) Let s = 2. For every o > 0, and each Y; € Y, there exists N(o, Y;) with the
property that if f € A®)(Y,), then

sup{n"E,(lz)(f,Ys):n > N(o, YS)} < c(o,s) sup{n?E,(f):n € N}.

Theorem 1.14 [10] (s = 1) Forevery o > 0,0 # 4, Y, € Y, and f € AP (Y,), we have

sup{n"E,(lz)(f, Y):ine€ N} < c(o) sup{n?E,(f):n € N}.

Theorem 1.15 [10] (s = 1) There is an absolute constant c, such that for every ¥; € Y, and a function

f € A®(Y,) the inequality

sup {m* (£, 1):m > (1 - y2)7 | < e sup(n*E,(:m € N,

hold.

Theorem 1.16 [10] (s = 1) For every Y; € Y, there exists a function f € A®)(Y;) satisfying
sup{n*E,(f):n €N} =1,

such that for each m € N, we have

TL4E7(nZ)(f, Yl) >cln (1++W - 1),

and
41(2) .
sup{n E,”(f,Y;):n € N} = clnlgp(y)l.

The paper structure is as follows: In Section 2, statements and definitions of the necessary and the main
results are stated. Then, proof of our main theorems in Section 3. We show some applications of paper in Section
4,

Il.  Statements and Definitions of the Necessary and Main Results

In this section, we assume that the function f is applying definition of the following.

Definition 2.1 [3] Let D be measurable set, f:ID — R be a bounded function, and £;:ID - R be
nondecreasing function for i € A. For a Lebesgue partition P of D, put LS(f, P, £) = ™ [T;eam; £; (M(Dj))
j=1

and LS(f,P, L) = 3™ [liea M; L, (M(Dj)) where p is ameasure function of D, m; = inf {f(x):x € D;}, M, =

sup {f(x):x€D;} and L=Ly,L,,.. . Also, Li(x;)—Li(x,_,)>0 , LS(f,P,L)<LS(f,P,L) ,
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—D -
Mieal,” fdL=sup {LS(f,L)}  and  TleaS, fdL=inf {IS(£,L)}  where  LS(f,L) =
— S —D
{LS(f,P,L): P partof set D} and LS(f, L) = {LS(f,P,£): P part of set D}. If [T;es [ l.'D) fdL =Tliea S, fdL
where dL = dL, X dL, X .... Then f is integral fi accor-ding to £; for i € A.

Lemma 2.2 [2] If f is a function of Lebesgue Stieltjes integral-i, then vf is a function of Lebesgue

Stieltjes integral-i, where v > 0 is real number, and
D D
[[[vrac=v] ] raz.
iEA | iEA |

holds.

Lemma 2.3 [2] If the functions f;, f; are integrable on the set D according to £;, for i € A, then f; + f;

is the function of integrable according to £;, for i € A, such that

gf(ﬂ+ﬁ)d_ﬁ=l;[ff1d_ﬁ+l;\[fﬁd_£_

Remark 2.4 [2] Let 7, be the class of all functions of integrable f that satisfying Definition 2.1, i.e.,

J; = {f: f is integrable function according to L;,i € A}

Xit+Xs

3 ] C 0y, then we denote

Remark 2.5 [15] Let x; € [%x#
=201, %= X500
where
Oy =011 ={x}, ={-1=x, < S xp_, S xp =1}
and
161l = ogrig%rxq{xiﬂ - x;}
the length of the largest interval in that partition.

Definition 2.6 [2] For f € Jr and r € N, we define
wd (F, o ll, [-110),,,, =sup {”wa‘,;(],')rA;'@(f(r),x)”p L0 <n<loyl],

where
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D
ALy (f,x) = 1_[ f fdLy
i€EA |
and |6, ]l < 2G~Y), vV = 2.

Now, we are ready to provide our next definition.

Definition 2.7 For a, § € ], and € J; , we set

En(f,wap), ;, = En(Papp = nE{If = pallagp, Pu€maNTy, f €ADEINLL N}
and
&5 (Frwap¥s), = inf{lIf = pallagy, Pn € MNADEING, f€2@WINL NI,
respectively, denote the degree of best unconstrained and (co)convex polynomial approximation of f.
Example 2.8 [1] Consider the function

f(x) = tan(cos(exp(x*))) (2.1)
with a partition Y, = {y;}7_, of [—1,2], such that

Yo=—-1<112<-<192<2=y,.

2

l‘S - -: ; ' -

PO L LT TR T

05 - W, g% EL.EL @7

-1.5

-1 0 1 2 3
Source: [1]

Figure 1. Coconvex function of f € A®(Y,).
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Source: [1]

Figure 2. Show graph for CCP approximation.
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Figure 3. Show graph for COCUNP approximation.

These Figures 1-3 were verified with MATLAB (see [1]). Suppose that « = 8 = 1, then

”f - pn”a,ﬁ,p =[(1- xz)(f - pn)"p ,
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if p =1, we have

= fl(l — x2) x tan(cos(exp(x*)))|dx + fl(l —x2) X py(x)|dx

|( f(l —x2)(x* — e3)dx
=1(x) + { _21
Uu — )+ 2)(x + Dx — 1) (x — 2)dx.

Thus,

I(x) =1,(x) x (1 +x?)

2

= —0.000079

-1

In(cos(cos(exp(x*))))
4x3 sin(exp(x*))

Io(x) =

and
I(x) = —0.00159
Finally, summary is drawn in the Table 1.

Table 1. Coconvex and unconstrained polynomial approximation.

Yi  Functio Polynomials If — Pallegp
-1 n , A@ (ys :]f 8512) E,
1
1.12 pa(x) = x*— €3 + 95.4
1.28
1.36
1.44
2.1
1.52
pi(x) =
1.68 x+2)x+1Dx—-1)(x—-2); ifxe[—1,1.005 + + | 11.00¢
176 —x+2)x+1D)x-1D(x—-2); if x € [1.(
1.92

Received: 18 Apr 2020 | Revised: 09 May 2020 | Accepted: 02 Jun 2020 2874



International Journal of Psychosocial Rehabilitation, Vol. 24, Issue 10, 2020
ISSN: 1475-7192

Now, it is appropriate to present the problem in this paper. Theorems 1.13-16 are invalid in ]L;“ﬁ space.
However, these theorems were not ensuring derivation of degrees for best COCUNP approximation like the

function (2.1), such that x € [—1,2]/Q¢ (see Figure 1).
Theorem 2.9 [2] Forr € N,, a, B € J,, there is a constant ¢ = ¢(r, a, B, p) such that if f € A(Z)n]L;‘f,

there, a number N = (f wf (FD, 1161, I) ) forn > and § € S(T,,r + 2)NAPNLYF, such that

170 =Pl < 6, minfol GO0, ol (0 T), ]

waﬁp

where

D D D D
Dl (fP,x) = f f f e f () ALy ALy g ALy =1_[ f fP ALy, (2.2)
1 2 1 —

ieA "t

D D D D
A;1¢_ﬁ(f(r),X)=f1 fz f wf D) ALy pdLop .. dLip =1_U fOdLye.  (2.3)
12

ieA "t
Moreover, if r,a, § = 0, then

If =S, < c(wf) wf (£, 11611, 1), -

In particular,

”f(r) - S(r)”wapm s w1r(f(r) 1651, I)

Theorem 2.10 [2] Let A* be the space of all k-monotone functions. If f € A"ﬂ]Lij is such that

FO @) = pl” (x), where p, € m,NA*, N > k > 2 and s € S(T,,  + 2)NA*NLL~. Then

If = sllw,zp < c(fip k., B, X x ol (11651l D -

In particular, if f is a convex function and p,, is a convex polynomial or piecewise convex polynomial,

then

¢
1 = Sl o < 6008 (o1l D 5

Now, the main results are ready for take positions in this paper.

Theorem 2.11 Leto,mn€N,0 #4,s e N, anda,B € ],. If f € A(Z)(YS)ﬂ]LZ‘ﬁmf, then
sup {n"S,(lZ)(f, Weap Ys)p: n= m} < csup{n"IEn(f)a‘ﬁ‘p: n € N}. (2.4)
In particular, suppose that Y, € Y; and s = 1. Then

&7 (fwep ¥s) < en=?al(FO, M0xIL1), 5 1 = 10yl
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Theorem 212 If o,n€N, oc=4,1=[-11], Y, €Y,, a,f €], and c=c(a,p,p). If fE€
AP (Y)NLy? NIy, then,
n7E,(app <,

and

1 fllgpp < ¢ X EP(fywap 1) (2.5)

)
p

wheren = i + dist(/,{—1,1}).

I1l.  Proof of Main Theorems
Before proving our results, we need the following remark.
Remark 3.1 If f in 7, is a function of Lebesgue Stieltjes integral-i, and f is differentiable function,

therefore,

,_df _d ([ df@
Cdx dx\) dG,,p,
0

f dgl,u,ID)a

X X
d J J d*f (W)
B\ ) ) @Gy, % 4G, B0 X AG2e

—d fo j‘ dif(u) d xd X .Xd X
S\ ) ) ) GG X @G X X Gy X o D0 X G2y X X Gy X
00 0
d Le
= Ix f £O @) AGup, |  x €L =[0,x] €D,,u €D, and G, p, = Q(#(]D)o))
ieA !
d Le
= — @)
dx<, f ! dgﬂ)
iEA
B e
+
=[] A dGiun,
ieA "t
f(i+1) — L r— i dlf _ di+1f?c
* dGi.p, dx \dG{,p, dx x dG},p, '

3.2 Proof of Theorem 2.11 Let f be a fixed shape preserving (convexity) in (I, = [y,,1] and I, =
[—1,y,-,]). Now, if ] = [a, b] < [—1,1], we should use /] /= — L _and ¢(x) = V1 — x? (see [24]). By using

6
ey
Definition 2.1, technique of Lemmas 2.2, 2.3 and inequality above, (with ease, it becomes in our inventory the
following conclusion).

|1

51 o (FO, 15115, = 111 {Supllwa,m"AZ"(f(”..)IIp 0<h< Tq.’)}
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wherem=i+r—fand0<¥<r<i,

£ [
|5 wm (F7 151 17) 5, = 151 %

sup| wyz X sup Z 1_[ ir]_lf(f(r)(x)) Lot (M(ID)]-)) X y(ID)j) ,0<h< |Il—{.|¢ ,

j=1meA

sincemzi+r—{’,theni—£<iandi+r—£§2i,whence,%2 1,

|Ij|€wm(f(r), |Ij|’1.)a,ﬁ {(lsupL(waﬁ X sup LS(f(T) Lt))| )P 0<h < |]|}

1
P\?P

p \
| n I
< cm‘lzI sup Z Hil}f(f(r)(X))Lit (#(Dj)) 0<hs< HGN”J}

k j=1ieA

< em ol (FO, 1051, 5 -

Assume that p,, € 2,5, (Y;)NAP(Y;) and the estimate

z+s(pn'” )aﬁp {SUP”waﬁd’TAHS(pm )“ 0<h< ”9N”}

< c {supllw, 7055 (0, — f +£,l,,0<hs 16,11} (3.1)

Now,

85 0n) = 8500+ 20 =] [ [ Gumr+naz,

iEA

[1[ oe-nase+ [[ dze =56 - 1.0+ 8500, (32)

€A ied " it5

Then, the proofs (3.1) and (3.2) an immediately give the following:

l+5(pn:n )aﬁp < C”f pn"aﬁp + C{Sup||waﬁ¢rAl+5(f(5) )” 0<h< ”9]\f”}

< C”f - pn“a,ﬁ,p + Cm_lwﬁ-s(f(S)’n_l)a,ﬁ,p ’

If (¢,r) = (3,5) and (£,r) = (2,5) are implies, respectively,
3 .
|5 w2 (F, |1f|'1f)a,g,p < em ol (F©, 10515, 1 <i<m,

and

|Ij|2wi+3(f”' |Ij|’1f)a,l3 = cm” wls(f(S) ||9N||)a/3p <jsn

Let O; = [a;, b;] be the sets, 1 < i < s, are all disjoint and do not contain the endpoints of [—1,1]. We

have chosen an arbitrary constant N (Y;) depend on O;, forn > N.
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Next, if 0;NI; = @, then f does not change its convexity on [;. Let k > 1, and a; < ¢ < a; + h be fixed-
large enough. The inequality
f")(x—c) =0, a, <x<a;+h,
is an immediate result of f € A® (Y)NLY’.
PART L. (Co)convex Polynomial. If p,, € m,,NA® (Y,), s > 0 such that
P, () (x—¢c) =0, a<x<a+h,
then, there exists the sequence f,, and

(' (@) .

_ )@ '
p"(x)_{lf,{(a+h)+f’ @+h)
| i@+ h) +fla+h)

if fla+h)+f (@) <f' (a+h),

otherwise.

Now, we are willing to derive the following estimates based on the above outcomes.

”f _pn”a,ﬁ,p = ”wa,ﬁ(f _pn)”p < ”wzx,ﬁ(f _pn)”Lp(ID)o) ,]D)O = [a,a + h]

Case I. If
fula+h)+f' (@ < f' (a+h), (3.3)
then,
B @
If pn”“'ﬂ'pSHw“'ﬁ (f f(a)> Lp(D,)
< fw (f—w>pdx x €D
“\J U f@ T
’ P
<cq Df Wep f—D ];(—(;))dgu,mo dx | ,where gﬂ,mo=g(y(mo)) andc; = c(G,u)™?!
; , P\
SClI f|wa,3f|pdx + f Wep X %dgwo dx I
l D, D, D, J

S

)

P\
) , (3.4)

sup L (wa’ﬁ X sup LS (%.gu,m))

<6 (sup (s Y +

supLS (sup L (wa,/; X %) , g/.t,l]%)

< | (sup Llwp IV +

the following is an immediate inequality of fD ;;r((;)) dx =1Inf(a), x € D,.
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If = Pallapp < c(Gpa)™ [(Isup L{wagf") + (Isup LS (w5 X In £(@),G0,) | )7,
from (2.2) and (2.3), then
If = Pullegp < G @ [{supllwgBh (£, DI, 0<h<t}+

{supllw gt (£, .0 < h<tf]
<2xcGua) o (f,app
<2x cm‘lwf’(f, Dapp -

Case I. A. (s = 0) We write g, (f, . |5, ..., X_1, ., x*) is defined in proof of Theorem 2.10 (see [2]),
and s(x) replace to p(x). For any v € I, and I,, are preserving its convexity with the function f. Virtue of [2, eq.
(10)], » = 0, we get

”f - P”a_ﬁ_p < Ck_vwi(f, |I1|;I1)a,ﬁ,p < Ck,vw;p(f' ”6J\f”)a,ﬁ,p .

Case I. B. (s = 1) From (3.4), and Remark 3.1, we have

_f (a)>
f(@)

”f - pn”a,ﬁ,p < Hwa,ﬁ (f

Lp(Do)

sup LS (supL (wa‘ﬁ X ];((aa)) = FD,QM,DO)

<c [(|sup L(fw,wfﬂp)’_7 + (|sup LS(sup L(wa‘ﬁ X infL(F’)),gM,DO)F)E] ,

1
P)ﬁ

<c, [(|sup L o )Y + (

since

dF L ;
F! — E — HJ Fx(l+1) dgH’]D)o — Sup LS (Fx(l‘f'l),gﬂ‘]mo),
iea "t

then,

1
IF = palg < |(sup LY +

)

(|sup LS (sup L (wa,[; X infL (sup LS (Fx(iﬂ),m)))'gu,m)a)

S
[E———

< | (supLlwp Y +

[

S

)

sup LS <(sup L (wa’g x sup LS (F(i),@))).gu,ﬂ»o)
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1 ’ (i-1
<q (|sup L(wa_gf)|p)p + | |supLS (supL (wa_ﬁ X (j;(—(;))) ),g#ﬁ)

by (2.2) and (2.3), we have
1 o .
If = pallagy < 2¢1 [(Isup L(wesf)|")? + sup {Ilwa,ﬁqb“lAz?;(f“—”,.)Ilp 0<h< IIHNH}]

<2q [”f”a.ﬁ.p + w?—1,i—1(f(i_1)' t)a.ﬁ.p] )

Case I1. If (3.3) is invalid, hence, create estimates by the second part of the polynomial p,,, i.e.,

(fn’(a+h)+f’(a+h))
wap\f ~\r@r ) + Flath)

If = oullapp < ‘
Lp(Do)

<c(a+hn, f)wf)(f. Oapp -

PART II. Unconstrained Polynomial. Assume that, (—1)i‘5(f(x) —qi1(f, - |y1 ...,ys)) >0,x€

(vi, yi41), but, without absence of generality.
IEn(f)a,ﬁ,p < {”f - ﬁn”a,ﬁ,p :pAn € T[n}
< |Jwro g (f —ﬁn)”p < c(f,p.i, @, B, %0 XNl (£ 110 1L, D g -

Hence, the theorem is proved

— Coconvex function
— Polynomial
— Inflection point

o Pa() /

Y1

Figure 4. The degree of UNP approximation of coconvex function f and y, € Y;.

3.3 Proof of Theorem 2.12 Assuming € A® (yl)ng'ﬁmf , such that

ff)x—y)=0 y €Y.

Let
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(x =971 = max{0, (x — 9)" 1}
and

1 — )i
P, (x) = T(x -1, neNIe(01)andx €],

be an arbitrary algebraic polynomial of < n — 1. Next, by Definitions 2.1, 2.7 and technique Lemmas

2.2, 2.3, then

Ev(Papp =0 {If = Pallagp a €mNT,, f€ADW)INLIF NI,

< ”f _pn”a,ﬁ,p = ”wa,ﬁ(f - pn)”p

f'wa,[f (f - pn)lp dx = flwa,ﬁf — Weap Pn |p dx
-1 -1

S0

p
dx

(1 _ 19)1—71
wa,ﬁf — Wap n

f (x — 19)’1‘1]

-1

1 7 1
(1-9)'
f'wa.ﬁflp dx | + [ n) ] j'wa,ﬁ(x - 19)741-_1|p dx
-1 -1

IA

IA

1 P -n
J lwopf]” dx | + [%] X
-1

1
P

0 1
f'w“'ﬂ (x— 19)’1‘1|p dx | + j|wa,[; (x—9)n1? |p dx
-1 0
From Figure 4, then

1— )t
e = w0l < f b |7 +[¥]x

Ifwmcx— o 1|vdx+fwaﬁ|(x— 9P dx

1
p a-urm .
=< f'wa,ﬁf| dx + ¢ X — X fwa,ﬁl(x—ﬁ)ﬁ'llpdx , ifn=5
0

-1

1 (
1—-9)* _ 94 |p L
< f|wa’ﬁf|pdx+c><[( 5) ]x{ fwa‘ﬁl(x 9P dx]| ;ifx >0,
0
-1

o Cifx <.

]
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Therefore,

S
S

1
X By (Papp <| |] " d
m n a,Bp = wa,ﬁf X

-1

I( 1

+cx4 <fwa_ﬁl(x—19)i|pdx ;ifx >0,
i1\o
Vo

ifx <99,

)
where m < n.

Let's check the reliability of (2.5).

1 1
||f||a_ﬁ_p = f|wa_gf|p dx | = f|wa_ﬁ(f — Pn +pn)|p dx |,
-1 -1

such that p, € A@ (¥,)Nm,, Ny

S

1 1
”f”a,ﬁ,p < flwa,ﬁ(f - pn)|p dx + j'w(x,ﬁ X pn|p dx
-1 -1

<c [g§2>(f’wa_ﬁ,y1)p +pallagy],  nEN

< en€P (f, wep, Y1)p-

Therefore,
M fllpp < €% 51(12)(f:wa,ﬁ'y1)p '
IV.  Some Applications

In this section, we will present some applications which type overlapping with COCUNP approximation

like a Korovkin type approximation theorem.

Fejer operators are

a, ~n—k kx — x* kx — x,
Fn(f;x)=?+z — (@ + by, .

X, — X x; — xt
k=1 * L L

In 2014, Al-Muhja [3] defined T,, by

= #
LG ™) kx —x kx —x,
Tn(f,x)—?+;){k (ak x*_xi +kai_x# )

n
where {/1,((")} is a matrix of real numbers, n = 1,2, ... and also a, and b,, are Fourier coefficients.
=1

Theorem 4.1 [3] If a sequence G, (f) is positive linear functional and bounded on C(S), f is bounded

measurable function to S. Then, there exists nondecreasing function to S, such that
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sty — Mim (sngn(f) —f) =0.

Assume that A = (a,,) is a nonnegative regular summability matrix and

3

; ¢ (i-1) —
sty — lim w1 (' 't)a_ﬁ_p =0. (4.1)
v=1

Theorem 4.2 Suppose that S € R is a Lebesgue measurable and u(S) < oo. If a sequence f,,(x) is
Lebesgue measurable function and £, (x) is finite a. e. as n is finite for x € S. Then,

. 2 .
sty — 1111_{1;10 gn )(fn'wa,ﬁﬂ Ys)p ~sty, — 11121;10 En(fn)a,ﬁ,p ,

(4.2)
where f,, € A(Z)(lg)ﬂ]l.;"ﬁﬂ.‘lf .
Proof. We let (2.4) be hold. Assuming

&7 (o ap %), < Enlfidags “3)

then, (4.3) implies f,, € A(Z)(Ys)m[.:,"ﬁmf (see Theorem 2.11), and put S is Lebesgue measurable. Now,

&7 (fuwap ¥s) = inf{llfy = Pullegp, o € APWINTNT, £ € 8@ FINLP N7,

I~

1
14
= ”fn - pn”a,ﬁ,p = lea,ﬁ(fn - pn)l dx
-1

Theorem 2.11 immediately give

&2 (fowap¥s) < 260 Whallegp + ol (7000, 5, - (44)

Let

#

X—Xx X — X,
and f3(x) = —

X, — f:() x; —x*’

i) =1 f,(x)= (4.5)

i

therefore, (4.1), (4.4) and (4.5) implies
5752)(ﬁ1,wa,3,ys)p < 5£2)(ﬁ,wa.ﬁ»ys)p + 5ﬁ2)(f2'wa,ﬁ'ys)p + €§2>(f3,wa,ﬁ,Ys)p

—_ '_1
< 2¢(g,0  (Mfillagp + Wallapy + 1fsllapp) + oy y (F700)

+w?il,i—1(fZ(i_1)' t)a’g’p + wi¢i1,i—1(f3(i_1)' t)a‘ﬁ‘p

and

En(fn)a,ﬁ,p = inf{”fn - pn”a,ﬁ,p » Pn € Ty ﬂgf ’ fn € ]LZ‘BnA(Z)(YS)njf}
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S

1
< fn = Pullagp < ca, B, p) flwa_/gfnlp dx | where c is large enough.

-1
From (4.5), therefore,
En(fapp < ¢@B,0)(Ifillapp + 1fallapp + 1fsllassp)-
Let us choose € > 0, forany &,{ > 0, e < £ and € < {. Then,

Case I. CONVEXTIY:

A = {n: 67 (fowap ¥o), 2 €}

5—5}

A, = n:Er(IZ)(fl,wa_B,Ys)p z 3

E—¢
A, = n:géz)(ﬁ,wa_ﬁ,ys)pz 3 }

Az = ng)(j%,wa_ﬁ,ys)p > d ; g}.
Thus,
A S A UA,UA;,
whence
Yal<s Y addu) diu ) al
neEA neA; neA, NEA;

Case I1. UNCONSTRAINED POLYNOMIAL.:
B = {Tl: En(fn)a,ﬁ,p 2 (}

( — &
B, ={n: En(ﬁ)a.ﬁnp 2 T}

( —&
B, =n: IEn(fz)a.ﬁ:P = T}

( — &
B; = in: [En(fg)zx,[?.p = T}
Thus,

B € B,UB,UB;,

whence

kj kj kj kj
RN RN AL
neB neB, neB, NeEB3

By Cases I and I, (4.2) is provEd.
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