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ABSTRACT 

The purpose of this work is to present the derivation and an estimate of the degrees of the best 

approximation based on convex, coconvex and unconstrained polynomials, and discuss some applications. We 

simplify the term convex and coconvex polynomial as (co)convex polynomial herein. 
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I. Introduction  

The (co)convex and unconstrained polynomial approximation (COCUNP approximation) is one of the 

important estimates in approximation theory with Jacobi weights that Kopotun has recently introduced (see [11, 

12, 13, 16, 17, 20]), and that are defined as 

𝓌𝛼,𝛽(𝑥) = (1 + 𝑥)
𝛼(1 − 𝑥)𝛽 ,                                                                                                                          

and  

𝕃𝑝
𝛼,𝛽

= {𝑓: [−1,1] → ℝ: ‖𝓌𝛼,𝛽  𝑓‖𝑝
< ∞, and 0 < 𝑝 < ∞}.                                                                      

𝕃𝑝
𝛼,𝛽

 space expansions will be used in the derivation of the degrees of the best unconstrained polynomial 

(UNP) approximation. Then the resulting degree after substitution will be rewriting the polynomial to (co)convex 

polynomial (COCP). Then, find the degree of the best coconvex polynomial (CCP) approximation which indicates 

two of inflection points at least and with one inflection point by using 𝕃𝑝
𝛼,𝛽

 space, which will be explained in this 

paper. In fact, we also need the nomenclatures: unconstrained and convex polynomial (UNCP) approximation and 
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Ditzian-Totik modulus of smoothness (DTMS). Next, let ∆ℎ
𝑘(𝑓, 𝑥) be the 𝑘th symmetric difference of 𝑓 is given 

[8] by  

∆ℎ
𝑘(𝑓, 𝑥) = {

∑(𝑘
𝑖
) (−1)𝑘−𝑖𝑓 (𝑥 + (

2𝑖−𝑘

2
)ℎ) ,   𝑥 ±

𝑘ℎ

2
∈ [−1,1]

𝑘

𝑖=0

 0                                             ,       otherwise.    
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Definition 1.1 [18] The space 𝐿𝑝([−1,1]), 0 < 𝑝 < ∞, denotes the space of all measurable functions 𝑓 

on [−1,1], such that 

‖𝑓‖𝐿𝑝[−1,1] =

{
 
 

 
 
(∫ |𝑓(𝑥)|𝑝𝑑𝑥

1

−1

)

1
𝑝

< ∞,      0 < 𝑝 < ∞  

 
esssup
𝑥∈[−1,1]

|𝑓(𝑥)|,                       𝑝 = ∞.         

                                                                             

Let ‖ . ‖𝑝 = ‖ . ‖𝐿𝑝[−1,1], 0 < 𝑝 ≤ ∞ and 𝜙(𝑥) = √1 − 𝑥2. Then, DTMS of a function 𝑓 ∈ 𝐿𝑝[−1,1], is 

defined [7] by 

𝜔𝑘,𝑟
𝜙 (𝑓, 𝑡)𝑝 = sup

0<ℎ≤𝑡
‖𝜙𝑟∆ℎ𝜙

𝑘 (𝑓, 𝑥)‖
𝑝
,               𝑘, 𝑟 ∈ ℕ𝜊  .                                                                            

Also, the 𝑘th usually modulus of smoothness of 𝑓 ∈ 𝐿𝑝[−1,1] is defined [8] by 

𝜔𝑘(𝑓, 𝛿, [−1,1])𝑝 = sup
0<ℎ≤𝛿

‖∆ℎ
𝑘(𝑓, 𝑥)‖

𝑝
,               𝛿 > 0, 𝑝 ≤ ∞.                                                               

Denote by 𝐴𝐶𝑙𝑜𝑐(−1,1) and 𝐴𝐶[−1,1] the set of functions whose are locally absolutely continuous on 

(−1,1) and absolutely continuous on [−1,1] respectively. Now, we will need to accept the following:  

Definition 1.2 [21] Let  

𝛼, 𝛽 ∈ 𝐽𝑝 = {
(
−1

𝑝
,∞) ,       if 𝑝 < ∞,

[0,∞),            if 𝑝 = ∞.  

                                                                                                              

Define 

𝕃𝑝,𝑟
𝛼,𝛽

= {𝑓: [−1,1] → ℝ: 𝑓(𝑟−1) ∈ 𝐴𝐶𝑙𝑜𝑐(−1,1), 1 ≤ 𝑝 ≤ ∞ and ‖𝓌𝛼,𝛽  𝑓
(𝑟)‖

𝑝
< ∞}                        

and for convenience denote 𝕃𝑝,0
𝛼,𝛽

= 𝕃𝑝
𝛼,𝛽

. 
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Definition 1.3 [25] Let 𝑓 ∈ ℂ be a continuous function on [−1,1], 𝑟 ≥ 1 and 𝜙(𝑥) = √1− 𝑥2. Denote 

by ℂ(𝑟) the space of continuous functions which possess an absolutely continuous (𝑟 − 1)st derivative in [−1,1] 

such that 𝑓(𝑟) is almost everywhere bounded; that is, 

ℂ(𝑟) = {𝑓 ∈ ℂ: 𝑓(𝑟−1) ∈ 𝐴𝐶[−1,1] and ‖𝑓(𝑟)‖ < ∞}.                                                                                 

Denote by ℂ̈(𝑟) the space of continuous functions which possess a locally absolutely continuous (𝑟 − 1)st 

derivative in (−1,1), such that  

ℂ̈(𝑟) = {𝑓 ∈ ℂ:𝑓(𝑟−1) ∈ 𝐴𝐶𝑙𝑜𝑐(−1,1) and ‖𝜙
𝑟𝑓(𝑟)‖ < ∞}.                                                                       

Now, we see appropriate to mention a concepts (co)convex and unconstrained polynomials. 

Definition 1.4 [26] A subset 𝑋 of ℝ𝑛 is convex set if [𝑥, 𝑦] ⊆ 𝑋, whenever 𝑥, 𝑦 ∈ 𝑋. Equivalently, 𝑋 is 

convex if  

(1 − 𝜆)𝑥 + 𝜆𝑦 ∈ 𝑋, for all 𝑥, 𝑦 ∈ 𝑋 and 𝜆 ∈ [0,1].   

The function 𝑓 is called convex of 𝑋 if  

𝑓((1 − 𝜆)𝑥 + 𝜆𝑦) ≤ (1 − 𝜆)𝑓(𝑥) + 𝜆𝑓(𝑦), for all 𝑥, 𝑦 ∈ 𝑋 and 𝜆 ∈ [0,1]. 

Definition 1.5 [22] Let 𝜋𝑛 be the space of all algebraic polynomials of degree ≤ 𝑛 − 1, and ∆(2) be the 

set of all convex functions on [−1,1] . For 𝑓 ∈ ℂ([−1,1])⋂∆(2) , the degree of best convex polynomial 

approximation of 𝑓 is  

𝐸𝑛
(2)(𝑓) = inf  {‖𝑓 − 𝑝𝑛‖ , 𝑝𝑛 ∈ 𝜋𝑛⋂∆

(2)} .                                                                                                    

Definition 1.6 [9] Let 𝑌𝑠 = {𝑦𝑖}𝑖=1
𝑠 , 𝑠 ∈ ℕ be a partition of [−1,1], that is, a collection of 𝑠 fixed points 

𝑦𝑖 such that  

𝑦𝑠+1 = −1 < 𝑦s < ⋯ < 𝑦1 < 1 = 𝑦𝜊                                                                                                               

and let ∆(2)(𝑌𝑠) be the set of continuous functions on [−1,1] that are convex downwards on the segment 

[𝑦𝑖+1, 𝑦𝑖] if 𝑖 is even and convex upwards on the same segment if 𝑖 is odd. The functions from ∆(2)(𝑌𝑠) are called 

coconvex. 

Definition 1.7 [14] Let ∆(2)(𝑌𝑠) be the collection of all functions 𝑓 in ℂ([−1,1]) that change convexity 

at the points of the set 𝑌𝑠, and are convex in [𝑦𝑠 , 1]. The degree of best CCP approximation of 𝑓 is defined by 

𝐸𝑛
(2)(𝑓, 𝑌𝑠) = inf  {‖𝑓 − 𝑝𝑛‖ , 𝑝𝑛 ∈ 𝜋𝑛⋂∆

(2)(𝑌𝑠)} .                                                                                       

Definition 1.8 [4] A domain 𝔻 of convex polynomial 𝑝𝑛  of ∆(2) is a subset of 𝑋 and 𝑋 ⊆ ℝ, satisfying 

the following properties:   

1) 𝔻 ∈ 𝒦𝑁, where 

𝒦𝑁 = {𝔻:𝔻 is a compact subset of 𝑋} 

is the class of all domain of convex polynomial,  

2) there is the point 𝑡 ∈ 𝑋/𝔻, such that  

|𝑝𝑛(𝑡)| > sup  {|𝑝𝑛(𝑥)|: 𝑥 ∈ 𝔻}, and 
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3) there is the function 𝑓 of ∆(2), such that  

‖𝑓 − 𝑝𝑛‖ ≤
𝑐

𝑛2
𝜔2,2
𝜙
(𝑓′′ ,

1

2
).  

Definition 1.9 [4] A domain 𝔻 of coconvex polynomial 𝑝𝑛  of ∆(2)(𝑌𝑠) is a subset of 𝑋  and 𝑋 ⊆ ℝ, 

satisfying the following properties:   

1) 𝔻 ∈ 𝒦𝑁(𝑌𝑠), where 

𝒦𝑁(𝑌𝑠) = {
𝔻:𝔻 is a compact subset of 𝑋,
and 𝑝𝑛  changes convexity at 𝔻

} 

is the class of all domain of coconvex polynomial, 

2) 𝑦𝑖's are inflection points, such that  

|𝑝𝑛(𝑦𝑖)| ≤
1

2
 , 𝑖 = 1, … , 𝑠, and 

3) there is the function 𝑓 of ∆(2)(𝑌𝑠), such that 

‖𝑓 − 𝑝𝑛‖ ≤
𝑐

𝑛2
𝜔𝑘,2
𝜙 (𝑓′′,

1

𝑛
). 

Definition 1.10 [19] The polynomial 𝑝𝑛  is a constrained polynomial, if 𝑝𝑛  is shape preserving of function 

𝑓, except that been UNP.  

DeVore (1977) introduced estimates for the approximation of monotone functions by monotone 

polynomials (see [6]). Also, he given results of the order as for the unconstrained approximation by polynomials. 

In 1992, DeVore et al. [5] proved for 𝑓 ∈ 𝐿𝑝, 0 < 𝑝 < 1, and 𝑘 ∈ ℕ, there exists an algebraic polynomial 

𝑝𝑛  of degree ≤ 𝑛 such that 

‖𝑓 − 𝑝𝑛‖𝑝 ≤ 𝐶𝜔𝑘
𝜙 (𝑓,

1

𝑛
)
𝑝
 ,                                                                                                                                

for 𝑥 ∈ 𝐼, where 𝜔𝑘
𝜙

 is the usual DTMS.  

In 1995, Kopotun [19] investigated the notion of degree of the best UNCP approximation presented in 

terms of 𝜔2
𝜙𝜆

. This approach of approximation does not depend on 𝜆 and 0 ≤ 𝜆 ≤ 1. In 1995, he proved uniform 

estimates for monotone and convex approximation of functions by algebraic polynomials in terms of the usual 

DTMS 𝜔𝑘
𝜙

. 

Definition 1.11 [27] The partition 𝑇̃𝑛 = {𝑡𝑗}𝑗=0
𝑛

 , where 

𝑡𝑗 = 𝑡𝑗,𝑛 = {
−cos (

𝑗Π

𝑛
) ,   if 0 ≤ 𝑗 ≤ 𝑛,

−1  ,                if  𝑗 < 0,       
 

and 𝑡𝑗 's as the knots of Chebyshev partition. 

Definition 1.12 [23] Let Σ𝑘,𝑛 be the collection of all continuous piecewise polynomials of degree 𝑘 − 1, 

on the Chebyshev partition and let Σ𝑘,𝑛
1 ⊆ Σ𝑘,𝑛 be the subset of all continuously differentiable such functions. That 

is, if 𝔭 ∈ Σ𝑘,𝑛, then  

𝔭|𝐼𝑗 = 𝑝𝑗  ,   𝑗 = 1, … , 𝑛,                                                                                                                                        
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where 𝑝𝑗 ∈ 𝜋𝑘−1, the collection of polynomials of degree ≤ 𝑘 − 1, and  

𝑝𝑗(𝑥𝑗) = 𝑝𝑗+1(𝑥𝑗) , 𝑗 = 1,… , 𝑛 − 1,                                                                                                                 

and if 𝔭 ∈ Σ𝑘,𝑛
1  , then in addition,  

𝑝𝑗
′(𝑥𝑗) = 𝑝𝑗+1

′ (𝑥𝑗) ,   𝑗 = 1,… , 𝑛 − 1.                                                                                                              

The following theorems indicate several cases of different for inflection points. 

Theorem 1.13 [10] (𝒔 ≥ 𝟐) Let 𝑠 ≥ 2. For every 𝜎 > 0, and each 𝑌𝑠 ∈ 𝕐𝑠 there exists 𝑁(𝜎, 𝑌𝑠) with the 

property that if 𝑓 ∈ ∆(2)(𝑌𝑠), then 

sup{𝑛𝜎𝐸𝑛
(2)(𝑓, 𝑌𝑠): 𝑛 > 𝑁(𝜎, 𝑌𝑠)} ≤ 𝑐(𝜎, 𝑠) sup{𝑛

𝜎𝐸𝑛(𝑓): 𝑛 ∈ ℕ}.                                                        

Theorem 1.14 [10] (𝒔 = 𝟏) For every 𝜎 > 0, 𝜎 ≠ 4, 𝑌1 ∈ 𝕐1 and 𝑓 ∈ ∆(2)(𝑌1), we have 

sup{𝑛𝜎𝐸𝑛
(2)(𝑓, 𝑌1): 𝑛 ∈ ℕ} ≤ 𝑐(𝜎) sup{𝑛

𝜎𝐸𝑛(𝑓): 𝑛 ∈ ℕ}.                                                                        

Theorem 1.15 [10] (𝒔 = 𝟏) There is an absolute constant 𝑐, such that for every 𝑌1 ∈ 𝕐1 and a function 

𝑓 ∈ ∆(2)(𝑌1) the inequality 

sup {𝑛4𝐸𝑛
(2)(𝑓, 𝑌1): 𝑛 > (1 − 𝑦1

2)
−1

2 } ≤ 𝑐 sup{𝑛4𝐸𝑛(𝑓): 𝑛 ∈ ℕ},                                                               

hold. 

Theorem 1.16 [10] (𝒔 = 𝟏) For every 𝑌1 ∈ 𝕐1 there exists a function 𝑓 ∈ ∆(2)(𝑌1) satisfying 

sup{𝑛4𝐸𝑛(𝑓): 𝑛 ∈ ℕ} = 1,                                                                                                                                   

such that for each 𝑚 ∈ ℕ, we have 

𝑛4𝐸𝑚
(2)(𝑓, 𝑌1) ≥ 𝑐 ln (

𝑚

1 + 𝑚2𝜙(𝑦1)
− 1),                                                                                                      

and 

sup{𝑛4𝐸𝑛
(2)(𝑓, 𝑌1): 𝑛 ∈ ℕ} ≥ 𝑐 ln|𝜙(𝑦1)| .                                                                                                    

The paper structure is as follows: In Section 2, statements and definitions of the necessary and the main 

results are stated. Then, proof of our main theorems in Section 3. We show some applications of paper in Section 

4.  

II. Statements and Definitions of the Necessary and Main Results 

In this section, we assume that the function 𝑓 is applying definition of the following.  

Definition 2.1 [3] Let 𝔻  be measurable set, 𝑓:𝔻 → ℝ  be a bounded function, and ℒ𝑖: 𝔻 → ℝ  be 

nondecreasing function for 𝑖 ∈ Λ. For a Lebesgue partition Ρ of 𝔻, put 𝐿𝑆(𝑓, Ρ, ℒ) = ∑ ∏ 𝑚𝑗𝑖∈Λ
𝑛
𝑗=1 ℒ𝑖 (𝜇(𝔻𝑗)) 

and 𝐿𝑆(𝑓, Ρ, ℒ) = ∑ ∏ 𝑀𝑗𝑖∈Λ
𝑛
𝑗=1 ℒ𝑖 (𝜇(𝔻𝑗)) where 𝜇 is ameasure function of 𝔻, 𝑚𝑗 = inf  {𝑓(𝑥): 𝑥 ∈ 𝔻𝑗}, 𝑀𝑗 =

sup  {𝑓(𝑥): 𝑥 ∈ 𝔻𝑗}  and ℒ = ℒ1, ℒ2,… . Also, ℒ𝑖(𝑥𝑗) − ℒ𝑖(𝑥𝑗−1) > 0 , 𝐿𝑆(𝑓, Ρ, ℒ) ≤ 𝐿𝑆(𝑓, Ρ, ℒ) , 
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∏ ∫
𝑖

𝔻

𝑖∈Λ 𝑓𝑑ℒ = sup  {𝐿𝑆(𝑓, ℒ)}  and ∏ ∫
𝑖

𝔻

𝑖∈Λ 𝑓𝑑ℒ = inf  {𝐿𝑆(𝑓, ℒ)}  where 𝐿𝑆(𝑓, ℒ) =

{𝐿𝑆(𝑓, Ρ, ℒ): Ρ part of set 𝔻}  and 𝐿𝑆(𝑓, ℒ) = {𝐿𝑆(𝑓, Ρ, ℒ): Ρ part  of set 𝔻} . If ∏ ∫
𝑖

𝔻

𝑖∈Λ 𝑓𝑑ℒ = ∏ ∫
𝑖

𝔻

𝑖∈Λ 𝑓𝑑ℒ 

where 𝑑ℒ = 𝑑ℒ1 × 𝑑ℒ2 ×…. Then 𝑓 is integral ∫
𝑖
 accor-ding to ℒ𝑖 for 𝑖 ∈ Λ. 

Lemma 2.2 [2] If 𝑓 is a function of Lebesgue Stieltjes integral-i, then 𝜐𝑓 is a function of Lebesgue 

Stieltjes integral-i, where 𝜐 > 0 is real number, and  

∏∫𝜐𝑓𝑑ℒ

𝔻

𝑖𝑖∈Λ

= 𝜐∏∫𝑓𝑑ℒ

𝔻

𝑖𝑖∈Λ

 ,                                                                                                                             

holds. 

 

 

Lemma 2.3 [2] If the functions 𝑓1 , 𝑓2  are integrable on the set 𝔻 according to ℒ𝑖, for 𝑖 ∈ Λ, then 𝑓1 + 𝑓2  

is the function of integrable according to ℒ𝑖, for 𝑖 ∈ Λ, such that 

∏∫(𝑓1 + 𝑓2)𝑑ℒ

𝔻

𝑖𝑖∈Λ

=∏∫𝑓1𝑑ℒ

𝔻

𝑖𝑖∈Λ

+∏∫𝑓2𝑑ℒ

𝔻

𝑖𝑖∈Λ

 .                                                                                        

Remark 2.4 [2] Let ℐ𝑓 be the class of all functions of integrable 𝑓 that satisfying Definition 2.1, i.e., 

ℐ𝑓 = {𝑓: 𝑓 is integrable function according to ℒ𝑖 , 𝑖 ∈ Λ}                                                                           

= {𝑓:∏∫
𝑖

𝔻

𝑖∈Λ

𝑓𝑑ℒ =∏∫
𝑖

𝔻

𝑖∈Λ

𝑓𝑑ℒ} .                                                                                                                

Remark 2.5 [15] Let 𝑥𝑖 ∈ [
𝑥𝑖+𝑥

⋕

2
,
𝑥𝑖+𝑥⋆

2
] ⊆ 𝜃𝒩, then we denote 

𝑥⋕ = 𝑥𝑗(𝑖)+1 ,   𝑥⋆ = 𝑥𝑗(𝑖)−2 

where  

𝜃𝒩 = 𝜃𝒩[−1,1] = {𝑥𝑖}𝑖=0
𝒩 = {−1 = 𝑥∘ ≤ ⋯ ≤ 𝑥𝒩−1 ≤ 𝑥𝒩 = 1} 

and  

‖𝜃𝒩‖ = max
0≤𝑖≤𝒩−1

{𝑥𝑖+1 − 𝑥𝑖} 

the length of the largest interval in that partition.  

Definition 2.6 [2] For 𝑓 ∈ ℐ𝑓 and 𝑟 ∈ ℕ𝜊, we define  

𝜔𝑖,𝑟
𝜙 (𝑓(𝑟), ‖𝜃𝒩‖, [−1,1])𝓌𝛼,𝛽,𝑝

= sup  {‖𝓌𝛼,𝛽𝜙
𝑟∆ℎ𝜙

𝑖 (𝑓(𝑟) , 𝑥)‖
𝑝
 , 0 < ℎ ≤ ‖𝜃𝒩‖} ,                           

where  
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∆ℎ𝜙
𝑖 (𝑓, 𝑥) =∏∫𝑓𝑑ℒ𝜙

𝔻

𝑖𝑖∈Λ

                                                                                                                                    

and ‖𝜃𝒩‖ < 2(𝑖
−1) , 𝒩 ≥ 2. 

Now, we are ready to provide our next definition. 

Definition 2.7 For 𝛼, 𝛽 ∈ 𝐽𝑝 and ∈ ℐ𝑓 , we set 

𝔼𝑛(𝑓,𝓌𝛼,𝛽)𝛼,𝛽,𝑝
= 𝔼𝑛(𝑓)𝛼,𝛽,𝑝 = inf {‖𝑓 − 𝑝𝑛‖𝛼,𝛽,𝑝 ,   𝑝𝑛 ∈ 𝜋𝑛⋂ℐ𝑓 ,   𝑓 ∈ Δ

(2)(𝑌𝑠)⋂𝕃𝑝
𝛼,𝛽
⋂ℐ𝑓}     

and 

ℰ𝑛
(2)(𝑓,𝓌𝛼,𝛽 , 𝑌𝑠)𝑝

= inf {‖𝑓 − 𝑝𝑛‖𝛼,𝛽,𝑝 ,   𝑝𝑛 ∈ 𝜋𝑛⋂∆
(2)(𝑌𝑠)⋂ℐ𝑓 ,   𝑓 ∈ Δ

(2)(𝑌𝑠)⋂𝕃𝑝
𝛼,𝛽
⋂ℐ𝑓}          

respectively, denote the degree of best unconstrained and (co)convex polynomial approximation of 𝑓. 

Example 2.8 [1] Consider the function  

𝑓(𝑥) = tan(cos(exp(𝑥4)))                                                                                                                        (2.1) 

with a partition 𝑌9 = {𝑦𝑖}𝑖=1
9  of [−1,2], such that  

𝑦10 = −1 < 1.12 < ⋯ < 1.92 < 2 = 𝑦𝜊  .                                                                                                      

Source: [1]  

Figure 1. Coconvex function of 𝑓 ∈ ∆(2)(𝑌9).  
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Source: [1]  

Figure 2. Show graph for CCP approximation.  

 

Source: [1]  

Figure 3. Show graph for COCUNP approximation. 

 

These Figures 1-3 were verified with MATLAB (see [1]). Suppose that 𝛼 = 𝛽 = 1, then  

‖𝑓 − 𝑝𝑛‖𝛼,𝛽,𝑝 = ‖(1 − 𝑥
2)(𝑓 − 𝑝𝑛)‖𝑝 ,                                                                                                          
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if 𝑝 = 1, we have 

= ∫|(1 − 𝑥2) × tan(cos(exp(𝑥4)))|𝑑𝑥

2

−1

+ ∫|(1 − 𝑥2) × 𝑝4(𝑥)|𝑑𝑥

2

−1

                                                      

= Ι(𝑥) +

{
 
 

 
 
∫(1 − 𝑥2)(𝑥4 − 𝑒3)𝑑𝑥

2

−1

                                      

∫(1 − 𝑥2)(𝑥 + 2)(𝑥 + 1)(𝑥 − 1)(𝑥 − 2)𝑑𝑥

2

−1

.

                                                                         

Thus, 

Ι(𝑥) = Ι𝜊(𝑥) × (1 + 𝑥
2)                                                                                                                                      

Ι𝜊(𝑥) =
ln(cos(cos(exp(𝑥4))))

4𝑥3 sin(exp(𝑥4))
|
−1

2

= −0.000079                                                                                       

and 

I(𝑥) = −0.00159                                                                                                                                                   

Finally, summary is drawn in the Table 1. 

Table 1. Coconvex and unconstrained polynomial approximation.  

𝒚𝒊 
Functio

n 

Polynomials ‖𝒇 − 𝒑𝒏‖𝜶,𝜷,𝒑 

-1 𝝅𝒏 ∆(𝟐)(𝒀𝒔) 𝓘𝒇 𝓔𝒏
(𝟐) 𝔼𝒏 

1 

(2.1) 

𝒑𝟒(𝒙) = 𝒙
𝟒 − 𝒆𝟑  +  𝟗𝟓. 𝟒 1.12 

1.28 

1.36 

𝒑𝟒(𝒙) = 

{
(𝒙 + 𝟐)(𝒙 + 𝟏)(𝒙 − 𝟏)(𝒙 − 𝟐) ; 𝐢𝐟 𝒙 ∈[−𝟏, 𝟏. 𝟎𝟎𝟓], [𝟏. 𝟗𝟖𝟏, 𝟐]

                   

−(𝒙 + 𝟐)(𝒙 + 𝟏)(𝒙 − 𝟏)(𝒙 − 𝟐) ;         𝐢𝐟 𝒙 ∈ [𝟏. 𝟎𝟎𝟓, 𝟏. 𝟗𝟖𝟏]
 

+ + 𝟏𝟏. 𝟎𝟎𝟗  

1.44 

1.52 

1.68 

1.76 

1.92 

2 
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Now, it is appropriate to present the problem in this paper. Theorems 1.13-16 are invalid in 𝕃𝑝
𝛼,𝛽

 space. 

However, these theorems were not ensuring derivation of degrees for best COCUNP approximation like the 

function (2.1), such that 𝑥 ∈ [−1,2]/Q𝑐 (see Figure 1). 

Theorem 2.9 [2] For 𝑟 ∈ ℕ𝜊, 𝛼, 𝛽 ∈ 𝐽𝑝, there is a constant 𝑐 = 𝑐(𝑟, 𝛼, 𝛽, 𝑝) such that if 𝑓 ∈ Δ(2)⋂𝕃𝑝,𝑟
𝛼,𝛽

, 

there, a number 𝒩 = 𝒩(𝑓,𝜔1,𝑟
𝜙
(𝑓(𝑟), ‖𝜃𝒩‖, 𝐼)𝓌𝛼,𝛽,𝑝

) for 𝑛 ≥ 𝒩 and 𝒮 ∈ 𝕊(𝑇̃𝑛 , 𝑟 + 2)⋂∆
(2)⋂𝕃𝑝,𝑟

𝛼,𝛽
, such that 

‖𝑓(𝑟) − 𝒮(𝑟)‖
𝓌𝛼,𝛽,𝑝

≤ 𝑐
𝑟,𝛼,𝛽,𝑝,𝜔1,𝑟

𝜙 min{𝜔𝑖,𝑟
𝜙 (𝑓(𝑟) , ‖𝜃𝒩‖, 𝐼𝛼)𝓌𝛼,𝛽,𝑝

, 𝜔𝑖,𝑟
𝜙 (𝑓(𝑟) , ‖𝜃𝒩‖, 𝐼𝛽)𝓌𝛼,𝛽,𝑝

}       

where  

∆ℎ𝜙,𝛼
𝑖 (𝑓(𝑟) , 𝑥) = ∫ ∫ …∫ …𝑓(𝑟)(𝑥)

𝔻

𝑖

𝔻

2

𝔻

1

𝑑ℒ1𝑡,𝛼𝑑ℒ2𝑡,𝛼 …𝑑ℒ𝑖𝑡,𝛼 … =∏∫ 𝑓(𝑟)
𝔻

𝑖𝑖∈Λ

𝑑ℒ𝑡𝜙,𝛼           (2.2) 

∆ℎ𝜙,𝛽
𝑖 (𝑓(𝑟) , 𝑥) = ∫ ∫ …∫ …𝑓(𝑟)(𝑥)

𝔻

𝑖

𝔻

2

𝔻

1

𝑑ℒ1𝑡,𝛽𝑑ℒ2𝑡,𝛽…𝑑ℒ𝑖𝑡,𝛽 … =∏∫ 𝑓(𝑟)
𝔻

𝑖𝑖∈Λ

𝑑ℒ𝑡𝜙,𝛽  .        (2.3) 

Moreover, if 𝑟, 𝛼, 𝛽 = 0, then 

‖𝑓 − 𝒮‖𝑝 ≤ 𝑐(𝜔1
𝜙) 𝜔𝑖

𝜙(𝑓, ‖𝜃𝒩‖, 𝐼)𝑝 .                                                                                                           

In particular,  

‖𝑓(𝑟) − 𝒮(𝑟)‖
𝓌𝛼,𝛽,𝑝

≤ 𝑐𝑟  𝜔1,𝑟
𝜙 (𝑓(𝑟) , ‖𝜃𝒩‖, 𝐼)𝓌𝛼,𝛽,𝑝

.                                                                                     

Theorem 2.10 [2] Let ∆𝑘  be the space of all 𝑘 -monotone functions. If 𝑓 ∈ ∆𝑘⋂𝕃𝑝,𝑟
𝛼,𝛽

 is such that 

𝑓(𝑟)(𝑥) = 𝑝𝑛
(𝑟)(𝑥), where 𝑝𝑛 ∈ 𝜋𝑛⋂∆

𝑘, 𝑁 ≥ 𝑘 ≥ 2 and s ∈ 𝕊(𝑇̃𝑛, 𝑟 + 2)⋂∆
𝑘⋂𝕃𝑝,𝑟

𝛼,𝛽
. Then  

‖𝑓 − s‖𝓌𝛼,𝛽,𝑝
≤ 𝑐(𝑓, 𝑝, 𝑘, 𝛼, 𝛽, 𝑥⋆, 𝑥

⋕)𝜔𝑖,𝑟
𝜙 (𝑓, ‖𝜃𝒩‖, 𝐼)𝓌𝛼,𝛽,𝑝

.                                                                   

In particular, if 𝑓 is a convex function and 𝑝𝑛  is a convex polynomial or piecewise convex polynomial, 

then 

‖𝑓 − s‖𝓌𝛼,𝛽,𝑝
≤ 𝑐𝑘𝜔𝑖,𝑟

𝜙 (𝑓, ‖𝜃𝒩‖, 𝐼)𝓌𝛼,𝛽,𝑝
.                                                                                                      

 

Now, the main results are ready for take positions in this paper. 

Theorem 2.11 Let 𝜎,𝑚, 𝑛 ∈ ℕ, 𝜎 ≠ 4, 𝑠 ∈ ℕ𝜊 and 𝛼, 𝛽 ∈ 𝐽𝑝. If 𝑓 ∈ Δ(2)(𝑌𝑠)⋂𝕃𝑝
𝛼,𝛽
⋂ℐ𝑓, then  

sup {𝑛𝜎ℰ𝑛
(2)(𝑓,𝓌𝛼,𝛽 , 𝑌𝑠)𝑝

: 𝑛 ≥ 𝑚} ≤ 𝑐 sup{𝑛𝜎𝔼𝑛(𝑓)𝛼,𝛽,𝑝: 𝑛 ∈ ℕ}.                                               (2.4) 

In particular, suppose that 𝑌𝑠 ∈ 𝕐𝑠 and 𝑠 ≥ 1. Then 

ℰ𝑛
(2)(𝑓,𝓌𝛼,𝛽 , 𝑌𝑠)𝑝

≤ 𝑐𝑛−𝜎𝜔𝑖,𝑟
𝜙
(𝑓(𝑟) , ‖𝜃𝒩‖, 𝐼)𝛼,𝛽,𝑝 , 𝑛 ≥

‖𝜃𝒩‖.                                                                
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Theorem 2.12 If 𝜎, 𝑛 ∈ ℕ , 𝜎 = 4 , 𝐼 = [−1,1] , 𝑌1 ∈ 𝕐1 , 𝛼, 𝛽 ∈ 𝐽𝑝  and 𝑐 = 𝑐(𝛼, 𝛽, 𝑝) . If 𝑓 ∈

Δ(2)(𝑌1)⋂𝕃𝑝
𝛼,𝛽
⋂ℐ𝑓, then, 

𝑛𝜎𝔼𝑛(𝑓)𝛼,𝛽,𝑝 ≤ 𝑐 ,                                                                                                                                                

and 

𝑛−𝜂‖𝑓‖𝛼,𝛽,𝑝 ≤ 𝑐 × ℰ𝑛
(2)(𝑓,𝓌𝛼,𝛽 , 𝑌1)𝑝

 ,                                                                                                   (2.5) 

where 𝜂 = 𝑖 + dist(𝐼, {−1,1}). 

 

III. Proof of Main Theorems 

Before proving our results, we need the following remark. 

Remark 3.1 If 𝑓 in ℐ𝑓  is a function of Lebesgue Stieltjes integral-i, and 𝑓 is differentiable function, 

therefore,  

𝑓′ =
𝑑𝑓

𝑑𝑥
=
𝑑

𝑑𝑥
(∫

𝑑𝑓(𝑢)

𝑑𝒢1,𝜇,𝔻𝜊
𝑑𝒢1,𝜇,𝔻𝜊

𝑥

0

)                                                                                                              

=
𝑑

𝑑𝑥
(∫∫

𝑑2𝑓(𝑢)

𝑑𝒢1,𝜇,𝔻𝜊 × 𝑑𝒢2,𝜇,𝔻𝜊
𝑑𝒢1,𝜇,𝔻𝜊 × 𝑑𝒢2,𝜇,𝔻𝜊

𝑥

0

𝑥

0

)                                                                                 

=
𝑑

𝑑𝑥
(∫∫…∫… 

𝑑𝑖𝑓(𝑢)

𝑑𝒢1,𝜇,𝔻𝜊 × 𝑑𝒢2,𝜇,𝔻𝜊 ×…× 𝑑𝒢𝑖,𝜇,𝔻𝜊 ×…
𝑑𝒢1,𝜇,𝔻𝜊 × 𝑑𝒢2,𝜇,𝔻𝜊 ×…× 𝑑𝒢𝑖,𝜇,𝔻𝜊 ×…

𝑥

0

𝑥

0

𝑥

0

) 

=
𝑑

𝑑𝑥
(∏∫ 𝑓(𝑖)(𝑢) 𝑑𝒢𝜇,𝔻𝜊

𝐼𝑥

𝑖𝑖∈Λ

) , 𝑥 ∈ 𝐼𝑥 = [0, 𝑥] ⊆ 𝔻𝜊  , 𝑢 ∈ 𝔻𝜊   and  𝒢𝜇,𝔻𝜊 = 𝒢(𝜇(𝔻𝜊))                

=
𝑑

𝑑𝑥
(∏∫ 𝑓(𝑖) 𝑑𝒢𝜇,𝔻𝜊

𝐼𝑥

𝑖𝑖∈Λ

)                                                                                                                                

=∏∫ 𝑓𝑥
(𝑖+1)

 𝑑𝒢𝜇,𝔻𝜊

𝐼𝑥

𝑖𝑖∈Λ

 .                                                                                                                                    

𝑓𝑥
(𝑖+1)

=
𝑑𝑖

𝑑𝒢𝑖,𝜇,𝔻𝜊
𝑖 𝑓′ =

𝑑

𝑑𝑥
(

𝑑𝑖𝑓

𝑑𝒢𝑖,𝜇,𝔻𝜊
𝑖

) =
𝑑𝑖+1𝑓𝑥

𝑑𝑥 × 𝑑𝒢𝑖,𝜇,𝔻𝜊
𝑖   .                                                                                  

3.2 Proof of Theorem 2.11 Let 𝑓 be a fixed shape preserving (convexity) in (𝐼1 = [𝑦2, 1] and 𝐼𝑛 =

[−1, 𝑦𝑛−2]). Now, if 𝐽 = [𝑎, 𝑏] ⊆ [−1,1], we should use /𝐽/=
|𝐽|

𝜙(
‖𝜃𝒩‖

2
)
 and 𝜙(𝑥) = √1 − 𝑥2 (see [24]). By using 

Definition 2.1, technique of Lemmas 2.2, 2.3 and inequality above, (with ease, it becomes in our inventory the 

following conclusion). 

|𝐼𝑗|
ℓ
𝜔𝑚(𝑓

(𝑟), |𝐼𝑗|, 𝐼𝑗)𝛼,𝛽,𝑝
= |𝐼𝑗|

ℓ
× {sup‖𝓌𝛼,𝛽𝜙

ℓΔℎ
𝑚(𝑓(𝑟), . )‖

𝑝
 , 0 < ℎ ≤

|𝐼𝑗|

𝑖
𝜙}                            
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where 𝑚 = 𝑖 + 𝑟 − ℓ and 0 ≤ ℓ ≤ 𝑟 ≤ 𝑖, 

|𝐼𝑗|
ℓ
𝜔𝑚(𝑓

(𝑟), |𝐼𝑗|, 𝐼𝑗)𝛼,𝛽,𝑝
= |𝐼𝑗|

ℓ
×                                                                                                                   

{|sup(𝓌𝛼,𝛽 × sup(∑∏inf
𝑗
(𝑓(𝑟)(𝑥))

𝑚∈Λ

𝑛

𝑗=1

ℒ𝑚𝑡 (𝜇(𝔻𝑗))) × 𝜇(𝔻𝑗))| , 0 < ℎ ≤
|𝐼𝑗|

𝑖
𝜙},              

since 𝑚 = 𝑖 + 𝑟 − ℓ, then 𝑖 − ℓ < 𝑖 and 𝑖 + 𝑟 − ℓ ≤ 2𝑖, whence, 
2𝑖

𝑚
≥ 1, 

|𝐼𝑗|
ℓ
𝜔𝑚(𝑓

(𝑟) , |𝐼𝑗|, 𝐼𝑗)𝛼,𝛽,𝑝
≤ {(|sup𝐿(𝓌𝛼,𝛽 × sup 𝐿𝑆(𝑓

(𝑟), ℒ𝑡))|
𝑝
)
1
𝑝, 0 < ℎ ≤

|𝐼𝑗|

𝑖
}                       

≤ 𝑐𝑚−1

{
 
 

 
 

(|sup(∑∏inf
𝑗
(𝑓(𝑟)(𝑥))

𝑖∈Λ

𝑛

𝑗=1

ℒ𝑖𝑡 (𝜇(𝔻𝑗)))|

𝑝

)

1
𝑝

, 0 < ℎ ≤ ‖𝜃𝒩‖

}
 
 

 
 

                                   

≤ 𝑐𝑚−1𝜔𝑖,𝑟
𝜙 (𝑓(𝑟) , ‖𝜃𝒩‖)𝛼,𝛽,𝑝.                                                                                                                            

Assume that 𝔭𝑛 ∈ Σ𝑖+5,𝑛(𝑌𝑠)⋂Δ
(2)(𝑌𝑠) and the estimate  

𝜔𝑖+5
𝜙 (𝔭𝑛 , 𝑛

−1)𝛼,𝛽,𝑝 = {sup‖𝓌𝛼,𝛽𝜙
𝑟Δℎ𝜙

𝑖+5(𝔭𝑛, . )‖𝑝
, 0 < ℎ ≤ ‖𝜃𝒩‖}                                                       

≤ 𝑐 {sup‖𝓌𝛼,𝛽𝜙
𝑟Δℎ𝜙

𝑖+5(𝔭𝑛 − 𝑓 + 𝑓, . )‖𝑝
, 0 < ℎ ≤ ‖𝜃𝒩‖}.                                                               (3.1) 

Now,  

Δℎ𝜙
𝑖+5(𝔭𝑛, . ) = Δℎ𝜙

𝑖+5(𝔭𝑛 − 𝑓 + 𝑓, . ) =∏∫ (𝔭𝑛 − 𝑓 + 𝑓)
𝔻

𝑖+5

𝑑ℒ𝜙
𝑖∈Λ

                                                              

=∏∫ (𝔭𝑛 − 𝑓)
𝔻

𝑖+5

𝑑ℒ𝜙
𝑖∈Λ

+∏∫ 𝑓
𝔻

𝑖+5

𝑑ℒ𝜙
𝑖∈Λ

= Δℎ𝜙
𝑖+5(𝔭𝑛 − 𝑓, . ) + Δℎ𝜙

𝑖+5(𝑓, . ) .                                  (3.2) 

Then, the proofs (3.1) and (3.2) an immediately give the following: 

𝜔𝑖+5
𝜙 (𝔭𝑛, 𝑛

−1)𝛼,𝛽,𝑝 ≤ 𝑐‖𝑓 − 𝔭𝑛‖𝛼,𝛽,𝑝 + 𝑐 {sup‖𝓌𝛼,𝛽𝜙
𝑟Δℎ𝜙

𝑖+5(𝑓(5), . )‖
𝑝
, 0 < ℎ ≤ ‖𝜃𝒩‖}               

≤ 𝑐‖𝑓 − 𝔭𝑛‖𝛼,𝛽,𝑝 + 𝑐𝑚
−1𝜔𝑖+5

𝜙
(𝑓(5), 𝑛−1)

𝛼,𝛽,𝑝
 .                                                                                           

If (ℓ, 𝑟) = (3,5) and (ℓ, 𝑟) = (2,5) are implies, respectively,  

|𝐼𝑗|
3
𝜔𝑖+2(𝑓

(3), |𝐼𝑗|, 𝐼𝑗)𝛼,𝛽,𝑝
≤ 𝑐𝑚−1𝜔𝑖,5

𝜙
(𝑓(5), ‖𝜃𝒩‖)𝛼,𝛽,𝑝 , 1 < 𝑗 < 𝑛,                                                   

and  

|𝐼𝑗|
2
𝜔𝑖+3(𝑓′′, |𝐼𝑗|, 𝐼𝑗)𝛼,𝛽,𝑝

≤ 𝑐𝑚−1𝜔𝑖,5
𝜙
(𝑓(5), ‖𝜃𝒩‖)𝛼,𝛽,𝑝 , 1 ≤ 𝑗 ≤ 𝑛.                                                      

Let O𝑖 = [𝑎𝑖 , 𝑏𝑖] be the sets, 1 ≤ 𝑖 ≤ 𝑠, are all disjoint and do not contain the endpoints of [−1,1]. We 

have chosen an arbitrary constant 𝑁(𝑌𝑠) depend on O𝑖, for 𝑛 ≥ 𝑁.  
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Next, if O𝑖⋂𝐼𝑖 = ∅, then 𝑓 does not change its convexity on 𝐼𝑖. Let 𝑘 ≥ 1, and 𝑎𝑖 < 𝑐 < 𝑎𝑖 + ℎ be fixed-

large enough. The inequality 

𝑓′′ (𝑥)(𝑥 − 𝑐) ≥ 0,         𝑎𝑖 ≤ 𝑥 ≤ 𝑎𝑖 + ℎ,                                                                                                        

is an immediate result of 𝑓 ∈ Δ(2)(𝑌𝑠)⋂𝕃𝑝
𝛼,𝛽

. 

PART I. (Co)convex Polynomial. If 𝑝𝑛 ∈ 𝜋𝑛⋂Δ
(2)(𝑌𝑠), 𝑠 ≥ 0 such that  

𝑝𝑛(𝑥)(𝑥 − 𝑐) ≥ 0,         𝑎 ≤ 𝑥 ≤ 𝑎 + ℎ,                                                                                                           

then, there exists the sequence 𝑓𝑛 and  

𝑝𝑛(𝑥) =

{
 
 

 
 𝑓′ (𝑎)

𝑓(𝑎)
                                      ;      if 𝑓𝑛(𝑎 + ℎ) + 𝑓′ (𝑎) ≤ 𝑓′ (𝑎 + ℎ),

𝑓𝑛
′(𝑎 + ℎ) + 𝑓′ (𝑎 + ℎ)

𝑓𝑛(𝑎 + ℎ) + 𝑓(𝑎 + ℎ)
       ;          otherwise.                                     

                                         

Now, we are willing to derive the following estimates based on the above outcomes. 

‖𝑓 − 𝑝𝑛‖𝛼,𝛽,𝑝 = ‖𝓌𝛼,𝛽(𝑓 − 𝑝𝑛)‖𝑝
≤ ‖𝓌𝛼,𝛽(𝑓 − 𝑝𝑛)‖𝐿𝑝(𝔻𝜊)

 , 𝔻𝜊 = [𝑎, 𝑎 + ℎ].                                

Case I. If  

𝑓𝑛(𝑎 + ℎ) + 𝑓′ (𝑎) ≤ 𝑓′ (𝑎 + ℎ),                                                                                                              (3.3) 

then, 

‖𝑓 − 𝑝𝑛‖𝛼,𝛽,𝑝 ≤ ‖𝓌𝛼,𝛽 (𝑓 −
𝑓′ (𝑎)

𝑓(𝑎)
)‖

𝐿𝑝(𝔻𝜊)

                                                                                                

≤ ( ∫ |𝓌𝛼,𝛽 (𝑓 −
𝑓′ (𝑎)

𝑓(𝑎)
)|

𝑝

𝑑𝑥

𝔻𝜊

)

1
𝑝

,   𝑥 ∈ 𝔻𝜊                                                                                                 

≤ 𝑐1 ( ∫ |𝓌𝛼,𝛽 (𝑓 − ∫
𝑓′ (𝑎)

𝑓(𝑎)
𝑑𝒢𝜇,𝔻𝜊

𝔻𝜊

)|

𝑝

𝑑𝑥

𝔻𝜊

)

1
𝑝

, where  𝒢𝜇,𝔻𝜊 = 𝒢(𝜇(𝔻𝜊)) and 𝑐1 = 𝑐(𝒢, 𝜇)
−1 

≤ 𝑐1

[
 
 
 

( ∫|𝓌𝛼,𝛽𝑓|
𝑝
𝑑𝑥

𝔻𝜊

)

1
𝑝

+ ( ∫ |𝓌𝛼,𝛽 × ∫
𝑓′ (𝑎)

𝑓(𝑎)
𝑑𝒢𝜇,𝔻𝜊

𝔻𝜊

|

𝑝

𝑑𝑥

𝔻𝜊

)

1
𝑝

]
 
 
 

                                                  

≤ 𝑐1 [(|sup 𝐿(𝓌𝛼,𝛽𝑓)|
𝑝
)
1
𝑝
+ (|sup𝐿 (𝓌𝛼,𝛽 × sup𝐿𝑆 (

𝑓′ (𝑎)

𝑓(𝑎)
, 𝒢𝜇,𝔻𝜊))|

𝑝

)

1
𝑝

]                                          

≤ 𝑐1 [(|sup 𝐿(𝓌𝛼,𝛽𝑓)|
𝑝
)
1
𝑝 + (|sup𝐿𝑆 (sup𝐿 (𝓌𝛼,𝛽 ×

𝑓′ (𝑎)

𝑓(𝑎)
) , 𝒢𝜇,𝔻𝜊)|

𝑝

)

1
𝑝

],                               (3.4) 

the following is an immediate inequality of ∫
𝑓′ (𝑎)

𝑓(𝑎)
𝑑𝑥

𝔻𝜊
= ln 𝑓(𝑎), 𝑥 ∈ 𝔻𝜊. 



International Journal of Psychosocial Rehabilitation, Vol. 24, Issue 10, 2020 

ISSN: 1475-7192 

 

 
Received: 18 Apr 2020 | Revised: 09 May 2020 | Accepted: 02 Jun 2020                                                                                         2879          

‖𝑓 − 𝑝𝑛‖𝛼,𝛽,𝑝 ≤ 𝑐(𝒢, 𝜇, 𝑎)
−1 [(|sup 𝐿(𝓌𝛼,𝛽𝑓)|

𝑝
)
1
𝑝 + (|sup𝐿𝑆(𝓌𝛼,𝛽 × ln 𝑓(𝑎) , 𝒢𝜇,𝔻𝜊)|

𝑝
)
1
𝑝],           

from (2.2) and (2.3), then 

‖𝑓 − 𝑝𝑛‖𝛼,𝛽,𝑝 ≤ 𝑐(𝒢, 𝜇, 𝑎)
−1 [{sup‖𝓌𝛼,𝛽Δℎ

1 (𝑓, . )‖
𝑝
 ,  0 < ℎ ≤ 𝑡} +                                                     

{sup‖𝓌𝛼,𝛽Δℎ
1 (𝑓, . )‖

𝑝
 , 0 < ℎ ≤ 𝑡}]                                                                                                                 

≤ 2 × 𝑐(𝒢, 𝜇, 𝑎)−1𝜔1(𝑓, 𝑡)𝛼,𝛽,𝑝                                                                                                                         

≤ 2 × 𝑐𝑚−1𝜔1
𝜙(𝑓, 𝑡)𝛼,𝛽,𝑝 .                                                                                                                                   

Case I. A. (𝒔 = 𝟎) We write 𝑞𝑛,𝑟(𝑓, . |𝑥𝜊 , … , 𝑥𝑘−1, 𝑥⋆, 𝑥
⋕) is defined in proof of Theorem 2.10 (see [2]), 

and 𝑠(𝑥) replace to 𝔭(𝑥). For any 𝓋 ∈ 𝐼1, and 𝐼𝑛 are preserving its convexity with the function 𝑓. Virtue of [2, eq. 

(10)], 𝑟 = 0, we get 

‖𝑓 − 𝔭‖𝛼,𝛽,𝑝 ≤ 𝑐𝑘,𝓋𝜔𝑖(𝑓, |𝐼1|, 𝐼1)𝛼,𝛽,𝑝 ≤ 𝑐𝑘,𝓋𝜔𝑖
𝜙(𝑓, ‖𝜃𝒩‖)𝛼,𝛽,𝑝 .                                                             

Case I. B. (𝒔 ≥ 𝟏) From (3.4), and Remark 3.1, we have 

‖𝑓 − 𝑝𝑛‖𝛼,𝛽,𝑝 ≤ ‖𝓌𝛼,𝛽 (𝑓 −
𝑓′ (𝑎)

𝑓(𝑎)
)‖

𝐿𝑝(𝔻𝜊)

                                                                                                  

≤ 𝑐1 [(|sup 𝐿(𝓌𝛼,𝛽𝑓)|
𝑝
)
1
𝑝 + (|sup𝐿𝑆 (sup𝐿 (𝓌𝛼,𝛽 × [

𝑓′ (𝑎)

𝑓(𝑎)
= 𝐹]) , 𝒢𝜇,𝔻𝜊)|

𝑝

)

1
𝑝

]                             

≤ 𝑐1 [(|sup 𝐿(𝓌𝛼,𝛽𝑓)|
𝑝
)
1
𝑝 + (|sup𝐿𝑆(sup𝐿(𝓌𝛼,𝛽 × inf 𝐿(𝐹

′)) , 𝒢𝜇,𝔻𝜊)|
𝑝
)
1
𝑝] ,                                      

since  

𝐹′ =
𝑑𝐹

𝑑𝑥
=∏∫ 𝐹𝑥

(𝑖+1) 𝑑𝒢𝜇,𝔻𝜊

𝐼𝑥

𝑖𝑖∈Λ

= sup𝐿𝑆 (𝐹𝑥
(𝑖+1), 𝒢𝜇,𝔻𝜊),                                                                     

then, 

‖𝑓 − 𝑝𝑛‖𝛼,𝛽,𝑝 ≤ 𝑐1 [(|sup 𝐿(𝓌𝛼,𝛽𝑓)|
𝑝
)
1
𝑝 +                                                                                                    

(|sup 𝐿𝑆 (sup 𝐿 (𝓌𝛼,𝛽 × inf 𝐿 (sup𝐿𝑆 (𝐹𝑥
(𝑖+1), 𝒢𝜇,𝔻𝜊))) , 𝒢𝜇,𝔻𝜊)|

𝑝

)

1
𝑝
]                                                   

≤ 𝑐1 [(|sup 𝐿(𝓌𝛼,𝛽𝑓)|
𝑝
)
1
𝑝
+                                                                                                                                

(|sup𝐿𝑆 ((sup 𝐿 (𝓌𝛼,𝛽 × sup𝐿𝑆 (𝐹
(𝑖), 𝒢𝜇,𝔻𝜊))) , 𝒢𝜇,𝔻𝜊)|

𝑝

)

1
𝑝

]                                                               
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≤ 𝑐1 [(|sup𝐿(𝓌𝛼,𝛽𝑓)|
𝑝
)
1
𝑝
+ (|sup𝐿𝑆 (sup𝐿 (𝓌𝛼,𝛽 × (

𝑓′ (𝑎)

𝑓(𝑎)
)

(𝑖−1)

) , 𝒢𝜇,𝔻𝜊)|

𝑝

)

1
𝑝

],                         

by (2.2) and (2.3), we have 

‖𝑓 − 𝑝𝑛‖𝛼,𝛽,𝑝 ≤ 2𝑐1 [(|sup 𝐿(𝓌𝛼,𝛽𝑓)|
𝑝
)
1
𝑝 + sup  {‖𝓌𝛼,𝛽𝜙

𝑖−1∆ℎ𝜙
𝑖−1(𝑓(𝑖−1), . )‖

𝑝
 , 0 < ℎ ≤ ‖𝜃𝒩‖}] 

≤ 2𝑐1 [‖𝑓‖𝛼,𝛽,𝑝 + 𝜔𝑖−1,𝑖−1
𝜙

(𝑓(𝑖−1), 𝑡)
𝛼,𝛽,𝑝

] .                                                                                

Case II. If (3.3) is invalid, hence, create estimates by the second part of the polynomial 𝑝𝑛 , i.e., 

‖𝑓 − 𝑝𝑛‖𝛼,𝛽,𝑝 ≤ ‖𝓌𝛼,𝛽 (𝑓 − (
𝑓𝑛
′(𝑎 + ℎ) + 𝑓′ (𝑎 + ℎ)

𝑓𝑛(𝑎 + ℎ) + 𝑓(𝑎 + ℎ)
))‖

𝐿𝑝(𝔻𝜊)

                                                           

≤ 𝑐(𝑎 + ℎ, 𝑛, 𝑓)𝜔1
𝜙(𝑓, 𝑡)𝛼,𝛽,𝑝 .                                                                                                                           

PART II. Unconstrained Polynomial. Assume that, (−1)𝑖−𝑠(𝑓(𝑥) − 𝑞𝑖−1(𝑓, . |𝑦1,… , 𝑦𝑠)) ≥ 0, 𝑥 ∈

(𝑦𝑖 , 𝑦𝑖+1), but, without absence of generality. 

𝔼𝑛(𝑓)𝛼,𝛽,𝑝 ≤ {‖𝑓 − 𝑝̂𝑛‖𝛼,𝛽,𝑝 , 𝑝̂𝑛 ∈ 𝜋𝑛}                                                                                                          

≤ ‖𝓌𝛼,𝛽(𝑓 − 𝑝̂𝑛)‖𝑝
≤ 𝑐(𝑓, 𝑝, 𝑖, 𝛼, 𝛽, 𝑥⋆, 𝑥

⋕)𝜔𝑖,𝑟
𝜙 (𝑓, ‖𝜃𝒩‖, 𝐼)𝛼,𝛽,𝑝.                                                          

Hence, the theorem is proved.     

     

 

 

 

 

 

 

 

 

Figure 4. The degree of UNP approximation of coconvex function 𝑓 and 𝑦1 ∈ 𝑌1 . 

 

3.3 Proof of Theorem 2.12 Assuming ∈ Δ(2)(𝑌1)⋂𝕃𝑝
𝛼,𝛽
⋂ℐ𝑓 , such that 

𝑓′′ (𝑥)(𝑥 − 𝑦1) ≥ 0,     𝑦1 ∈ 𝑌1 .                                                                                                                         

Let  

𝑓(𝑥) 𝑝𝑛(𝑥) 

𝑦1 

𝜗 

− Coconvex function 

− Polynomial 

− Inflection point 
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(𝑥 − 𝜗)+
𝑛−1 = max{0, (𝑥 − 𝜗)𝑛−1}                                                                                                                    

and 

𝑝𝑛(𝑥) =
(1 − 𝜗)1−𝑛

𝑛
(𝑥 − 𝜗)+

𝑛−1  ,     𝑛 ∈ ℕ, 𝜗 ∈ (0,1) and 𝑥 ∈ 𝐼,                                                            

be an arbitrary algebraic polynomial of ≤ 𝑛 − 1. Next, by Definitions 2.1, 2.7 and technique Lemmas 

2.2, 2.3, then 

𝔼𝑛(𝑓)𝛼,𝛽,𝑝 = inf {‖𝑓 − 𝑝𝑛‖𝛼,𝛽,𝑝 ,   𝑝𝑛 ∈ 𝜋𝑛⋂ℐ𝑓 ,   𝑓 ∈ Δ
(2)(𝑌1)⋂𝕃𝑝

𝛼,𝛽
⋂ℐ𝑓}                                          

≤ ‖𝑓 − 𝑝𝑛‖𝛼,𝛽,𝑝 = ‖𝓌𝛼,𝛽(𝑓 − 𝑝𝑛)‖𝑝
                                                                                                             

= (∫|𝓌𝛼,𝛽(𝑓 − 𝑝𝑛)|
𝑝

1

−1

𝑑𝑥)

1
𝑝

= (∫|𝓌𝛼,𝛽𝑓 −𝓌𝛼,𝛽  𝑝𝑛|
𝑝

1

−1

𝑑𝑥)

1
𝑝

                                                            

= (∫ |𝓌𝛼,𝛽𝑓 −𝓌𝛼,𝛽 [
(1 − 𝜗)1−𝑛

𝑛
(𝑥 − 𝜗)+

𝑛−1]|

𝑝1

−1

𝑑𝑥)

1
𝑝

                                                                          

≤ (∫|𝓌𝛼,𝛽𝑓|
𝑝

1

−1

𝑑𝑥)

1
𝑝

+ [
(1 − 𝜗)1−𝑛

𝑛
]( ∫|𝓌𝛼,𝛽(𝑥 − 𝜗)+

𝑛−1|
𝑝

1

−1

𝑑𝑥)

1
𝑝

                                                    

≤ (∫|𝓌𝛼,𝛽𝑓|
𝑝

1

−1

𝑑𝑥)

1
𝑝

+ [
(1 − 𝜗)1−𝑛

𝑛
] ×                                                                                                        

[( ∫|𝓌𝛼,𝛽(𝑥 − 𝜗)+
𝑛−1|

𝑝

0

−1

𝑑𝑥)

1
𝑝

+ (∫|𝓌𝛼,𝛽(𝑥 − 𝜗)+
𝑛−1|

𝑝

1

0

𝑑𝑥)

1
𝑝

] .                                                           

From Figure 4, then  

‖𝓌𝛼,𝛽(𝑓 − 𝑝𝑛)‖𝑝
𝑝
≤ ∫|𝓌𝛼,𝛽𝑓|

𝑝

1

−1

𝑑𝑥 + [
(1 − 𝜗)1−𝑛

𝑛
] ×                                                                             

[ ∫𝓌𝛼,𝛽|(𝑥 − 𝜗)+
𝑛−1|𝑝

0

−1

𝑑𝑥 +∫𝓌𝛼,𝛽|(𝑥 − 𝜗)+
𝑛−1|𝑝

1

0

𝑑𝑥]                                                                           

≤ ∫|𝓌𝛼,𝛽𝑓|
𝑝

1

−1

𝑑𝑥 + 𝑐 × [
(1 − 𝜗)1−𝑛

𝑛
] × [∫𝓌𝛼,𝛽|(𝑥 − 𝜗)+

𝑛−1|𝑝

1

0

𝑑𝑥] , if 𝑛 = 5                            

≤ ∫|𝓌𝛼,𝛽𝑓|
𝑝

1

−1

𝑑𝑥 + 𝑐 × [
(1 − 𝜗)−4

5
] ×

{
 

 
[∫𝓌𝛼,𝛽|(𝑥 − 𝜗)+

4 |𝑝

1

0

𝑑𝑥] ; if 𝑥 > 𝜗,

0 ;                                                  if 𝑥 ≤ 𝜗.
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Therefore, 

𝑚4 × 𝔼𝑛(𝑓)𝛼,𝛽,𝑝 ≤ (∫|𝓌𝛼,𝛽𝑓|
𝑝

1

−1

𝑑𝑥)

1
𝑝

+ 𝑐 ×

{
 
 

 
 
[(∫𝓌𝛼,𝛽|(𝑥 − 𝜗)+

4 |𝑝

1

0

𝑑𝑥)

1
𝑝

] ; if 𝑥 > 𝜗,

0 ;                                                  if 𝑥 ≤ 𝜗,

           

where 𝑚 ≤ 𝑛. 

Let's check the reliability of (2.5).  

‖𝑓‖𝛼,𝛽,𝑝 = (∫|𝓌𝛼,𝛽𝑓|
𝑝

1

−1

𝑑𝑥)

1
𝑝

= (∫|𝓌𝛼,𝛽(𝑓 − 𝑝𝑛 + 𝑝𝑛)|
𝑝

1

−1

𝑑𝑥)

1
𝑝

,                                                     

such that 𝑝𝑛 ∈ Δ
(2)(𝑌1)⋂𝜋𝑛⋂ℐ𝑓 

‖𝑓‖𝛼,𝛽,𝑝 ≤ (∫|𝓌𝛼,𝛽(𝑓 − 𝑝𝑛)|
𝑝

1

−1

𝑑𝑥)

1
𝑝

+(∫|𝓌𝛼,𝛽 × 𝑝𝑛|
𝑝

1

−1

𝑑𝑥)

1
𝑝

                                                          

≤ 𝑐 [ℰ𝑛
(2)(𝑓,𝓌𝛼,𝛽 , 𝑌1)𝑝

+ ‖𝑝𝑛‖𝛼,𝛽,𝑝] , 𝑛 ∈ ℕ                                                                                        

≤ 𝑐𝑛𝜂ℰ𝑛
(2)(𝑓,𝓌𝛼,𝛽 , 𝑌1)𝑝

.                                                                                                                                     

Therefore,  

𝑛−𝜂‖𝑓‖𝛼,𝛽,𝑝 ≤ 𝑐 × ℰ𝑛
(2)(𝑓,𝓌𝛼,𝛽 , 𝑌1)𝑝

 .                                                                                                           

 

IV. Some Applications 

In this section, we will present some applications which type overlapping with COCUNP approximation 

like a Korovkin type approximation theorem.  

Fejer operators are 

Ϝ𝑛(𝑓; 𝑥) =
𝑎𝜊
2
+∑

𝑛 − 𝑘

𝑛

𝑛

𝑘=1

 (𝑎𝑘
𝑘𝑥 − 𝑥⋕

𝑥⋆ − 𝑥𝑖
+ 𝑏𝑘

𝑘𝑥 − 𝑥⋆
𝑥𝑖 − 𝑥

⋕
).                                                                           

In 2014, Al-Muhja [3] defined Τ𝑛 by 

Τ𝑛(𝑓; 𝑥) =
𝑎𝜊
2
+∑𝜆𝑘

(𝑛)

𝑛

𝑘=1

 (𝑎𝑘
𝑘𝑥 − 𝑥⋕

𝑥⋆ − 𝑥𝑖
+ 𝑏𝑘

𝑘𝑥 − 𝑥⋆
𝑥𝑖 − 𝑥

⋕
) ,                                                                             

where {𝜆𝑘
(𝑛)}

𝑘=1

𝑛

 is a matrix of real numbers, 𝑛 = 1,2,… and also 𝑎𝑘 and 𝑏𝑘 are Fourier coefficients.  

Theorem 4.1 [3] If a sequence 𝐺𝑛(𝑓) is positive linear functional and bounded on ℂ(𝑆), 𝑓 is bounded 

measurable function to 𝑆. Then, there exists nondecreasing function to 𝑆, such that  
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st𝐴 − lim
𝜇(𝑆)→0

(sup
𝑛
𝐺𝑛(𝑓) − 𝑓) = 0.                                                                                                                   

 

    Assume that 𝐴 = (𝑎𝑘) is a nonnegative regular summability matrix and  

st𝐴 − lim
𝑡→0

∑𝜔𝑖−1,𝑖−1
𝜙 (𝑓𝜐

(𝑖−1)
, 𝑡)

𝛼,𝛽,𝑝

3

𝜐=1

= 0 .                                                                                            (4.1) 

Theorem 4.2 Suppose that 𝑆 ⊆ ℝ is a Lebesgue measurable and 𝜇(𝑆) < ∞. If a sequence 𝑓𝑛(𝑥) is 

Lebesgue measurable function and 𝑓𝑛(𝑥) is finite a. e. as 𝑛 is finite for 𝑥 ∈ 𝑆. Then,  

st𝐴 − lim
𝑛→∞

ℰ𝑛
(2)(𝑓𝑛,𝓌𝛼,𝛽 , 𝑌𝑠)𝑝

~st𝐴 − lim
𝑛→∞

𝔼𝑛(𝑓𝑛)𝛼,𝛽,𝑝  ,                                                                  (4.2) 

where 𝑓𝑛 ∈ ∆
(2)(𝑌𝑠)⋂𝕃𝑝

𝛼,𝛽
⋂ℐ𝑓 . 

Proof. We let (2.4) be hold. Assuming  

ℰ𝑛
(2)(𝑓𝑛,𝓌𝛼,𝛽 , 𝑌𝑠)𝑝

≤ 𝔼𝑛(𝑓𝑛)𝛼,𝛽,𝑝 ,                                                                                                         (4.3) 

then, (4.3) implies 𝑓𝑛 ∈ ∆
(2)(𝑌𝑠)⋂𝕃𝑝

𝛼,𝛽
⋂ℐ𝑓 (see Theorem 2.11), and put 𝑆 is Lebesgue measurable. Now, 

ℰ𝑛
(2)(𝑓𝑛,𝓌𝛼,𝛽 , 𝑌𝑠)𝑝

= inf {‖𝑓𝑛 − 𝑝𝑛‖𝛼,𝛽,𝑝 ,   𝑝𝑛 ∈ ∆
(2)(𝑌𝑠)⋂𝜋𝑛⋂ℐ𝑓 ,   𝑓𝑛 ∈ ∆

(2)(𝑌𝑠)⋂𝕃𝑝
𝛼,𝛽
⋂ℐ𝑓}     

≤ ‖𝑓𝑛 − 𝑝𝑛‖𝛼,𝛽,𝑝 ≤ (∫|𝓌𝛼,𝛽(𝑓𝑛 − 𝑝𝑛)|
𝑝

1

−1

𝑑𝑥)

1
𝑝

.                                                                                        

Theorem 2.11 immediately give 

ℰ𝑛
(2)(𝑓𝑛,𝓌𝛼,𝛽 , 𝑌𝑠)𝑝

≤ 2𝑐(𝑔, 𝜇)−1‖𝑓𝑛‖𝛼,𝛽,𝑝 +𝜔𝑖−1,𝑖−1
𝜙 (𝑓𝑛

(𝑖−1), 𝑡)
𝛼,𝛽,𝑝

 .                                    (4.4) 

Let 

𝑓1(𝑥) = 1,   𝑓2(𝑥) =
𝑥 − 𝑥#

𝑥∗ − 𝑥𝑖
  and 𝑓3(𝑥) =

𝑥 − 𝑥∗
𝑥𝑖 − 𝑥

#
 ,                                                                          (4.5) 

therefore, (4.1), (4.4) and (4.5) implies  

ℰ𝑛
(2)(𝑓𝑛 ,𝓌𝛼,𝛽 , 𝑌𝑠)𝑝

≤ ℰ𝑛
(2)(𝑓1,𝓌𝛼,𝛽 , 𝑌𝑠)𝑝

+ ℰ𝑛
(2)(𝑓2,𝓌𝛼,𝛽 , 𝑌𝑠)𝑝

+ ℰ𝑛
(2)(𝑓3,𝓌𝛼,𝛽 , 𝑌𝑠)𝑝

                      

≤ 2𝑐(𝑔, 𝜇)−1(‖𝑓1‖𝛼,𝛽,𝑝 + ‖𝑓2‖𝛼,𝛽,𝑝 + ‖𝑓3‖𝛼,𝛽,𝑝) + 𝜔𝑖−1,𝑖−1
𝜙 (𝑓1

(𝑖−1), 𝑡)
𝛼,𝛽,𝑝

                                        

+𝜔𝑖−1,𝑖−1
𝜙 (𝑓2

(𝑖−1), 𝑡)
𝛼,𝛽,𝑝

+𝜔𝑖−1,𝑖−1
𝜙 (𝑓3

(𝑖−1), 𝑡)
𝛼,𝛽,𝑝

                                                                                   

and 

𝔼𝑛(𝑓𝑛)𝛼,𝛽,𝑝 = inf {‖𝑓𝑛 − 𝑝𝑛‖𝛼,𝛽,𝑝 ,   𝑝𝑛 ∈ 𝜋𝑛⋂ℐ𝑓 ,   𝑓𝑛 ∈ 𝕃𝑝
𝛼,𝛽
⋂∆(2)(𝑌𝑠)⋂ℐ𝑓}                                      
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≤ ‖𝑓𝑛 − 𝑝𝑛‖𝛼,𝛽,𝑝 ≤ 𝑐(𝛼, 𝛽, 𝑝)( ∫|𝓌𝛼,𝛽𝑓𝑛|
𝑝

1

−1

𝑑𝑥)

1
𝑝

  where 𝑐 is large enough.                               

From (4.5), therefore, 

𝔼𝑛(𝑓𝑛)𝛼,𝛽,𝑝 ≤ 𝑐(𝛼, 𝛽, 𝑝)(‖𝑓1‖𝛼,𝛽,𝑝 + ‖𝑓2‖𝛼,𝛽,𝑝 + ‖𝑓3‖𝛼,𝛽,𝑝).                                                                   

Let us choose 𝜀 > 0, for any 𝜉, 𝜁 > 0, 𝜀 < 𝜉 and 𝜀 < 𝜁. Then, 

Case I. CONVEXTIY: 

𝒜 = {𝑛: ℰ𝑛
(2)(𝑓𝑛,𝓌𝛼,𝛽 , 𝑌𝑠)𝑝

≥ 𝜉}                                                                                                                     

𝒜1 = {𝑛: ℰ𝑛
(2)(𝑓1,𝓌𝛼,𝛽 , 𝑌𝑠)𝑝

≥
𝜉 − 𝜀

3
}                                                                                                            

𝒜2 = {𝑛: ℰ𝑛
(2)(𝑓2,𝓌𝛼,𝛽 , 𝑌𝑠)𝑝

≥
𝜉 − 𝜀

3
}                                                                                                            

𝒜3 = {𝑛: ℰ𝑛
(2)(𝑓3,𝓌𝛼,𝛽 , 𝑌𝑠)𝑝

≥
𝜉 − 𝜀

3
} .                                                                                                          

Thus,  

𝒜 ⊆𝒜1⋃𝒜2⋃𝒜3 ,                                                                                                                                              

whence 

∑𝑎𝑛
𝑘𝑗

𝑛∈𝒜

≤ ∑ 𝑎𝑛
𝑘𝑗

𝑛∈𝒜1

⋃ ∑ 𝑎𝑛
𝑘𝑗

𝑛∈𝒜2

⋃ ∑ 𝑎𝑛
𝑘𝑗

𝑛∈𝒜3

.                                                                                                   

Case II. UNCONSTRAINED POLYNOMIAL: 

ℬ = {𝑛: 𝔼𝑛(𝑓𝑛)𝛼,𝛽,𝑝 ≥ 𝜁}                                                                                                                                    

ℬ1 = {𝑛: 𝔼𝑛(𝑓1)𝛼,𝛽,𝑝 ≥
𝜁 − 𝜀

3
}                                                                                                                           

ℬ2 = {𝑛: 𝔼𝑛(𝑓2)𝛼,𝛽,𝑝 ≥
𝜁 − 𝜀

3
}                                                                                                                           

ℬ3 = {𝑛: 𝔼𝑛(𝑓3)𝛼,𝛽,𝑝 ≥
𝜁 − 𝜀

3
} .                                                                                                                         

Thus,  

ℬ ⊆ ℬ1⋃ℬ2⋃ℬ3 ,                                                                                                                                                  

whence 

∑𝑏𝑛
𝑘𝑗

𝑛∈ℬ

≤ ∑ 𝑏𝑛
𝑘𝑗

𝑛∈ℬ1

⋃ ∑ 𝑏𝑛
𝑘𝑗

𝑛∈ℬ2

⋃ ∑ 𝑏𝑛
𝑘𝑗

𝑛∈ℬ3

 .                                                                                                     

By Cases I and II, (4.2) is proved.     
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