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 ABSTRACT-- Assume that G is a finite group and X is a subset of G. The commuting graph is denoted by 

С(G,X) which has a set of vertices X with two distinct vertices x, y  X being connected together on the condition 

of xy = yx. In this paper, computational approaches  applied to investigate the structure of commuting graphs 

Ϲ(G,X) when G is one of the Mathieu groups along with  X a G-conjugacy class for elements of order 3. We will 

pay particular attention to analyze the discs structure and determinate the diameters, girths and the clique number 

for these graphs. 
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MATHEMATICS SUBJECT CLASSIFICATION 2010: 20D08,05C25 ,05C69. 

I. INTRODUCTION AND PRELIMINARIES 

It is believed that studying the action of a group on a graph is one of the best comprehensible ways of analyzing 

the structure of the group. Suppose that G is a group and X is a subset of G; the commuting graph is denoted by 

С(G,X) which has  the set  of vertices X with two vertices x, y  X are connected if x ≠y, where xy = yx. The 

commuting graphs were first illustrated by Fowler and Brauer in the seminal paper [1], they were eminent for 

giving evidence of a prescribed isomorphism of an involution centralizer, where there is a limited number of non-

abelian groups capable of containing it. These graphs are extremely vital for the works of the Margulis-Platanov 

conjecture (see [2] as the graphs mentioned in [1] have X = G\{1} where 1 is the identity element of G). When X 

is a conjugacy class of involution, the commuting graph known as the commuting involution graph. Rowley, Hart 

(nѐe Perkins), Bates, and Bundy put their efforts into investigating the commuting involution graphs and supplying 

the  diameters and disc sizes ( see [3,4,5 and 6]). Suppose that X a conjugacy class of elements of order 3, Nawawi 

and Rowley in [7] analyzing the С(G,X) when G is either a symmetric group Sn or a sporadic group McL. The aim 

of this paper is to investigate the commuting graphs when G is one of the Mathieu groups along with  X a G-

conjugacy class for elements of order 3. The research involves scrutinizing the discs structures and calculating the 

diameters, girths and the clique number for these graphs. From now, we shall assume that G is one of the 

aforementioned groups. Also,  we let t be an element of order 3 in G and X = tG. Clearly G, acting by conjugation, 

induces graph automorphisms of С(G,X) and is transitive on its vertices. For x   X and i   ℤ+; ∆i(x) denotes the 

set of vertices of С(G,X) which has distance i from x,using the usual distance function for graphs, this distance 

function will be denoted by d(; ). We use Gx(= CG(x)) to denote the stabilizer in G of x. Obviously ∆i(x) will be a 
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union of certain Gx -orbits. Therefore, we are looking for finding the Gx-orbits of X. In computational group theory 

Magma [8] and GAP [9] packages are considered the most commonly utilized. In most steps of the algorithm Gap 

will be dominant in the implementation, while the permutation character of the centralizer of t in G (CG(t)) may be 

verified using magma and hence the number of CG(t)-orbits (Permutation Rank on X) under the action of X on 

CG(t) is calculated. Finally, we will use the online Atlas of Group Representations [10] to get a class name of the 

groups and we refer to it as The Online Atlas. 

For the aforesaid groups the sizes of conjugacy classes for elements of order 3 and the permutation ranks on 

each class. Also, the structure of the centralizer of t in G which can be seen in [11] are given in the next table. 

 

 

 

 

 

 

II. COMPUTATIONAL METHOD     

Let x  ∆i(t) and z  CG(t) one can see immediately that xz  ∆i(t). Thus for a finite group G, each disc ∆i(t) 

of the commuting graph Ϲ(G,X) is a union of specific CG(t)-orbits. 

The size of CG(t) -orbits under the action of conjugation on tG can be calculated by using the character table of the 

group, as we can see in the following result: 

Proposition 2.1. [12] Let G be a group acting transitively on a finite set Ω, with a permutation character . 

Suppose that α  Ω and that Gα has exactly k orbits on Ω. Then ˂,˃ = k. 

The quantity k in Proposition 2.1 is called the permutation rank of Gα on Ω .Therefore, the permutation rank 

of CG(t) on X is the number of CG(t)-orbits under the conjugation action on X. 

Now, let C be a G-conjugacy class. It is obvious that the set XC = {x  X : tx C} under the conjugation action 

of CG(t)-breaks up into sub orbits. Thus to find all the sub orbits of X, we have to identify the CG(t)-orbits of XC, 

for all those C such that XC ≠ Ø . 

Let Ci , Cj and Ck  be  the conjugacy classes of a finite group G. Then for a fixed element g  Ck, define the set 

aijk = |{(gi, gj)  Ci x Cj | gigj = g}|. 

Then for all possible i, j, k the value aijk is called a class structure constant for G. 

The next lemma will be used to compute the class structure constants for G 

Lemma 2.3. [13] Let G be a finite group with n conjugacy classes C1,C2, …,Cn. Then for all i, j, k we have  gi 

Table 1.  Disc Sizes and Permutation Character 

Group Class Size of  

Class 

Permutation 

 Rank 

CG(t) 

M11 

 

3A 440 30 C3 ×S3 

M12 3A 1760 44 ((C3 × C3) : C3) : C2 

M12 3B 2640 87 C3 × A4 

M22 3A 12320 364 C3 × A4 

M23 3A 56672 356 GL(2, 4) 

M24 3A 226688 272 C3.A6 

M24 3B 485760 1018 C3 × PSL(3,2) 
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aijk =
|𝐺|

|𝐶𝐺(𝑔𝑖)||𝐶𝐺(𝑔𝑗)|
 ΣIrr(G )  

(𝑔𝑖)(𝑔𝑗)(𝑔𝑘)̅̅ ̅̅ ̅̅ ̅̅

Ӽ(𝐼)
 

Where gi , gj and gj are respectively in Ci,Cj and Ck,  and 𝐼𝑟𝑟(𝐺) be the  irreducible character table in G.  

We should not that  |XC| = |{(c, x)  C x X | cx = t}|= | aijk |. Then  by employing      Lemma 2.3 we get 

|XC| = 
|𝐺|

|𝐶𝐺(g)||𝐶𝐺(t)|
    ΣεIrr(G )  

(𝑔)(𝑡)2

(𝐼)
 

Therefore, from the complex character table of G, which is available in GAP character table library, and using 

the GAP function "Class Multiplication Coefficient" we immediately obtain the size of XC.  

 

III. DIAMETERS, GIRTHS AND  CLIQUES NUMBER 

To determinate the girths and the cliques number for the Ϲ(G,X) we will use the fact that the graph is regular 

to generated the graph by using the gap package YAGS [14] ( specifically GraphByRelation ) on the connected 

component  which contains  t. This will provide us the Girths and  Cliques Number. in the next algorithm which 

can be realized by using the definition of the commuting graph. The algorithm is given as follows: 

 

Algorithm 1 

Input: The group G, t  G (the elements of order 3); 

i: X  tG : the G-conjugacy class of t meet the centralizer in G of t. 

ii: Rel  {the set of elements satisfies the condition : x ≠y and x*y = y *x} 

iii: С (G,X) GraphByRelation(Rel,X). 

v: Grith Girth(С (G,X)) & (С (G,X ))Clique number (С (G,X)) . 

Output: Girth and the clique number of С (G,X). 

 

The next table yields by applying Algorithm 1 on the group in Table 1: 

 

 

 

 

 

 

 

 

 

 

 

The last column of the Table 2 represented the maximum elementary abelian group generated by the maximum 

clique. 

 

IV. ANALYZING THE DISCS STRUCTURES  

Table 2.  Girth and cliques number 

Graph Girth clique number  clique group 

C(M11,3A) 3 8 C3 x C3 

 C(M12, 3B) 3 8 C3 x C3 

C(M12, 3A) 3 6 C3 x C3 

C(M22, 3A) 3 8 C3 x C3 

C(M23, 3A) 3 8 C3 x C3 

C(M24, 3A) 3 8 C3 x C3 

C(M24, 3B) 3 6 C3 x C3 
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This section dedicated to analyzing the structures of the ∆i(t) of the commuting graph Ϲ(G, X). 

4.1. CG(t)-Orbits of ∆i(t)  

The next algorithm employed to break ∆i(t) into CG(t)-sub orbits of XC , for all those С (G-Conjugacy class) 

such that XC  ≠ φ and provided their sizes.  

 

Algorithm 2 

Input: the group G, t ∈ G, (the elements of order 3), С (G-Conjugacy Class) 

i: X  t G the G-conjugacy class of t  

ii: CG(t) centralizer in G of t.  

iii: O  the orbits in CG(t) of X.  

iv: |XC | ”Class Multiplication Coefficient” of C in X. 

v: For i → 1 to size (O) Do 

vi: If t ∗ O[i][1] Conjugate to C → YC ∪ O[i]  

vii: Repeat the steps vi, vii until |XC | = |YC |.  

viii: XC  XC = YC .  

ix: For j → 1 to size O Do  

x: If t in O[j] → t = Oj ( there is only one)  

xi: Y0  Y0 ∪ j  

xii: For i in O[j] Do  

xiii: For h → 1 to size (O) Do  

xiv: If d(O[h][1], i) = 1 → {Y1 ∪ {h}}\{Y0}  

xv: For x in Y1 → ∆1(t) ∪ O[x]  

xvi: for j in Y1 Do 

xvii: Repeat the steps x1, x2 and 

xviii: If d(O[h][1], i) = 1 → {Y2 ∪ {h}} \{Y1 ∪ Y0}  

xix: For x in Y2 → ∆2(t) ∪ O[x]  

xx: Repeat the above steps and replace the Yi+1 with Yi and ∆i+1(t) with ∆i(t). 

Output: The positions the sets XC in the ∆i(t) with their sizes. 

 

 

For each graph in Table 2 we provide information about the discs structure. We should note that in the next 

tables the value n ∗ m means the number and the size of CG(t)-orbits in certain ∆i(t), respectively. The exceptional 

case is C(M11,3A) as the graph is disconnected: 

1-C(M11, 3A): Form Table 1 permutation rank of 3A is 30 and CG(t) ≅C3 × S3. In Table 2 one can see that the 

graph is disconnected and by Algorithm 2 there are 55 connected 8-components of C(M11, 3A). 

2- C(M12, 3A): Form Table 1 permutation rank of 3A is 44. Form Table 2 the graph is connected with diameter 

6. The centralizer of  t 3A isomorphic to ((C3 × C3) : C3) : C2. The structure of  the C(M12, 3A) can be seen  in 

the following table: 
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, 3A)12(MCDiscs structure of  Table 3.  

(t)6Δ (t)5Δ (t)4Δ (t)3Δ (t)2Δ (t)1Δ Class 

Name 

     1 1A 

9*2      2A 

27      2B 

9*,27     6*2 3A 

    18,*2  3B 

54   27   4A 

54   27   4B 

54*2 54*4 54*2    5A 

54*2      6A 

  54*4 27,*2   6B 

 54*4     8A 

 54*4     8B 

54 54     11A 

54 54     11B 

,3B)12(MCTable 4. Discs structure of  

(t)6Δ (t)5Δ (t)4Δ (t)3Δ (t)2Δ (t)1Δ CLASS 

NAME 

     1 1A 

    12,12  2A 

18      2B 

 12,12   12,12 4,4 3A 

18  36,36  12,12 4,4 3B 

 36,36 36    4A 

 36,36 36    4B 

 18 36,36,36 

,36,36,36 

36,36   5A 

36,36  36,36  12,12  6A 

 36,36,36,36 36,36,36,36 36,36,36,36   6B 

 ,36,36,36,36 36,36,36,36    8A 

 36,36,36,36 36,36,36,36    8B 

  36-36-36-36    10A 

 36,36,36,36 36 36,36,36   11A 

 36,36,36,36 36 36,36,36   11B 
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3- C(M12, 3B): Form Table 1 permutation rank of 3B is 87. Form Table 2 the graph is connected with diameter 

6. The centralizer of t ∊ 3B isomorphic to C3 × A4. The structure of   the C(M12, 3B) can be seen in the following 

table: 

 

4- C(M22, 3A): Form Table 1 permutation rank of 3A is 364. Form Table 2 the graph is connected with 

diameter 6. The centralizer of t ∊ 3A isomorphic to C3 × A4. The structure  of the C(M22, 3A) can be seen in the 

following table: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

, 3A)22(MCTable 5. Discs structure of  

t)(6Δ (t)5Δ (t)4Δ (t)3Δ (t)2Δ (t)1Δ CLASS 

NAME 

     1 1A 

18 
18 36 36 3, 2*12  2A 

 10*36,18 7*36 36 6*12,3,2*12 6*4 3A 

 6*36 8*36    4A 

 8*36 6*36 14*36   4B 

 58*36 28*36 14*36   5A 

18  8*36 6*36 6*12  6A 

 17*36 31*36    7A 

 17*36 31*36    7B 

 16*36 8*36    8A 

 11*36 8*36    11A 

 11*36 8*36    11B 

, 3A)23(MCDiscs structure of  6. Table 

(t)4Δ (t)3Δ (t)2Δ (t)1Δ CLASS 

 NAME 

   1 1A 

 90 15*2,60  2A 

180*3,90*4 

 

180,90 60*7,15*2 20*3 3A 

180*6,90*3 

 

180*13,,90*2,45   4A 

180*41 180*15 60*3  5A 

 

180*4,90 180*16,90*4,45 60*6  6A 

180*21,90*3 180*13,90*2   7A 

180*21,90*3 180*13,90*2   7B 

180*20,90*2 180*8,90*2   8A 

180*19 180*6   11A 

180*19 180*6   11B 
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5- C(M23, 3A): Form Table 1 

permutation rank of 3A is 356. Form Table 2 the graph is connected with diameter 4. The centralizer of t ∊ 

3Aisomorphic to GL(2, 4). The structure of the C(M23, 3A) can be seen in the following table: 

 

 

 

 

 

 

 

 

6-C(M24, 3A): Form Table 1 permutation rank of 3A is 272. Form Table 2 the graph is connected with diameter 

4. The centralizer of t ∊ 3A isomorphic to C3.A6. The structure  of the C(M24, 3A) can be seen in the following 

table: 

 

, 3A)24(MC.  Discs structure of 7 Table 

(t)4Δ (t)3Δ (t)2Δ (t)1Δ CLASS 

NAME 

   1 1A 

 135 45-90  2A 

18-45    2B 

4*180,45,18 

 

1080-135 360*3,45,90 120 3A 

  360  3B 

135,135    4A 

1080,270 1080*3,540*8,270   4B 

180*4    4C 

1080*12 1080*9- 360*3  5A 

1080*2,270,135*2 1080*9,540*8-270 360*3  6A 

1080 1080   6B 

1080*8,180*3 1080*6--540*6   7A 

1080*8,180*3 1080*6--540*6   7B 

1080*9,540*2 1080*7-540*2   8A 

 1080*2   10A 

1080*12 1080*20 

 

  11A 

 540*4   12A 

1080*2 1080*2   12B 

1080*4 1080*4,540*3   14A 

1080*4 1080*4,540*3   14B 

180*8 90   14A 

14B   90 

 

180*8 

15A  60*3 180*2 180*6 

15B  60*3 180*2 180*6 

23A   180*4 180*2 

23B   180*4 180*2 
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1080*4 1080*7 360*3  15A 

1080*4 1080*7 360*3  15B 

 1080*3   21A 

 1080*3   21B 

1080 1080*6   23A 

1080 1080*6   23B 

 

 

6-C(M24,3B): Form Table 1 permutation rank of 3B is 1018. Form Table 2 the graph is connected with 

diameter 5. The centralizer of t ∊ 3B isomorphic to C3  × PSL(3, 2). The analyzing of the C(M24, 3B) can be seen 

in the following table: 

 

 

 

 

 

 

Section 5. Main Theorem 

The commuting  

graph  C(M11,3A) is disconnected 

with 55 connected  8-

components as seen above. For a 

connected commuting 

involution graph C(G, X),given in 

the Table 2, the graph structure 

described in following 

theorem: 

Theorem 3.1:. For G one of 

the groups of Table2 , we have 

the following results: 

 •Diam Ϲ(M12, 3A) = 6 

and |∆1| =13, |∆2| =36   , |∆3| = 108  

, |∆4| =324 , |∆5| =756 |∆6| =522.  

•Diam Ϲ(M12, 3B) = 6 

and |∆1| =17, |∆2| =96   , |∆3| = 432  

, |∆4| =1080 , |∆5| =906 |∆6| =108. 

•Diam C(M22, 3A) = 6 

and |∆1| = 26; |∆2| = 198; |∆3| = 

1296; |∆4| = 

Table 8. Discs structure of C(M24, 3B) 

5(t)∆ 4(t)∆ 3(t)∆ 2(t)∆ 1(t)∆ CLASS 

NAME 

    1 1A 

 42 21   2A 

 126  168,42 56 2B 

 168  6*168 56 3A 

 168,126,42 504,2*168,21 5*168,42  3B 

 2*126    4A 

 2*126 9*504   4B 

 8*504  4*168  4C 

42,126 4*504,2*168 22*504   5A 

 22*504,168 23*504,2*168   6A 

 20*504,4*126 8*504 2*168  6B 

 12*504 5*504 168*3  7A 

 12*504 5*504 168*3  7B 

 32*504 8*504   8A 

 40*504,4*126 6*504   10A 

 89*504 43*504   11A 

 36*504 24*504   12A 

 60*504 56*504 4*168  12B 

 50*504 32*504   14A 

 50*504 32*504   14B 

 37*504,3*168 26*504   15A 

 37*504,3*168 26*504   15B 

 19*504 16*504 3*168  21A 

 19*504 16*504 3*168  21B 
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5184 ,|∆5| = 5580 ,|∆6| = 36. 

• Diam C(M23,3A) = 4 

and |∆1| = 61; |∆2|  = 1440; |∆3| = 20430; |∆4| = 

34740. 

• Diam C(M24, 3A) = 4 and |∆1| = 123 , |∆2| = 6030, |∆3| = 137970, |∆4| = 

82566. 

• Diam C(M24; 3B) = 6 and |∆1|  = 113, |∆2| = 5796; |∆3| = 191226, |∆4| = 

288456, |∆5| = 168. 

Proof. Each of ∆i(t) of the commuting graph C(G;X) is a union of specific CG(t)- orbits. Thus using the previous 

tables, we obtain the proof. 
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