ANALYSING THE COMMUTING GRAPHS FOR ELEMENTS OF ORDER 3 IN MATHIEU GROUPS

${ }^{1}$ DUHA ABBAS AZEEZ, ${ }^{2}$ ALI ABD AUBAD

Abstract

Assume that G is a finite group and X is a subset of G. The commuting graph is denoted by $C(G, X)$ which has a set of vertices X with two distinct vertices $x, y \in X$ being connected together on the condition of $x y=y x$. In this paper, computational approaches applied to investigate the structure of commuting graphs $C(G, X)$ when G is one of the Mathieu groups along with X a G-conjugacy class for elements of order 3. We will pay particular attention to analyze the discs structure and determinate the diameters, girths and the clique number for these graphs.

Keywords-- Sporadic groups; commuting graph; diameter, cliques.

MATHEMATICS SUBJECT CLASSIFICATION 2010: 20D08,05C25,05C69.

I. INTRODUCTION AND PRELIMINARIES

It is believed that studying the action of a group on a graph is one of the best comprehensible ways of analyzing the structure of the group. Suppose that G is a group and X is a subset of G; the commuting graph is denoted by $C(\mathrm{G}, \mathrm{X})$ which has the set of vertices X with two vertices $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ are connected if $\mathrm{x} \neq \mathrm{y}$, where $\mathrm{xy}=\mathrm{yx}$. The commuting graphs were first illustrated by Fowler and Brauer in the seminal paper [1], they were eminent for giving evidence of a prescribed isomorphism of an involution centralizer, where there is a limited number of nonabelian groups capable of containing it. These graphs are extremely vital for the works of the Margulis-Platanov conjecture (see [2] as the graphs mentioned in [1] have $X=G \backslash\{1\}$ where 1 is the identity element of G). When X is a conjugacy class of involution, the commuting graph known as the commuting involution graph. Rowley, Hart (nèe Perkins), Bates, and Bundy put their efforts into investigating the commuting involution graphs and supplying the diameters and disc sizes (see [3,4,5 and 6]). Suppose that X a conjugacy class of elements of order 3, Nawawi and Rowley in [7] analyzing the $\mathrm{C}(\mathrm{G}, \mathrm{X})$ when G is either a symmetric group S_{n} or a sporadic group McL. The aim of this paper is to investigate the commuting graphs when G is one of the Mathieu groups along with X a Gconjugacy class for elements of order 3. The research involves scrutinizing the discs structures and calculating the diameters, girths and the clique number for these graphs. From now, we shall assume that G is one of the aforementioned groups. Also, we let t be an element of order 3 in G and $X=t{ }^{\mathrm{G}}$. Clearly G , acting by conjugation, induces graph automorphisms of $C(\mathrm{G}, \mathrm{X})$ and is transitive on its vertices. For $\mathrm{x} \in \mathrm{X}$ and $\mathrm{i} \in \mathbb{Z}^{+} ; \Delta_{\mathrm{i}}(\mathrm{x})$ denotes the set of vertices of $C(\mathrm{G}, \mathrm{X})$ which has distance i from x , using the usual distance function for graphs, this distance function will be denoted by $\mathrm{d}(;)$. We use $\mathrm{G}_{\mathrm{x}}\left(=\mathrm{C}_{\mathrm{G}}(\mathrm{x})\right)$ to denote the stabilizer in G of x . Obviously $\Delta_{\mathrm{i}}(\mathrm{x})$ will be a

[^0]union of certain $G x$-orbits. Therefore, we are looking for finding the G_{x}-orbits of X. In computational group theory Magma [8] and GAP [9] packages are considered the most commonly utilized. In most steps of the algorithm Gap will be dominant in the implementation, while the permutation character of the centralizer of t in $G\left(\mathrm{C}_{\mathrm{G}}(\mathrm{t})\right)$ may be verified using magma and hence the number of $\mathrm{C}_{\mathrm{G}}(\mathrm{t})$-orbits (Permutation Rank on X) under the action of X on $\mathrm{C}_{\mathrm{G}}(\mathrm{t})$ is calculated. Finally, we will use the online Atlas of Group Representations [10] to get a class name of the groups and we refer to it as The Online Atlas.

For the aforesaid groups the sizes of conjugacy classes for elements of order 3 and the permutation ranks on each class. Also, the structure of the centralizer of t in G which can be seen in [11] are given in the next table.

Table 1. Disc Sizes and Permutation Character				
Group	Class	Size of Class	Permutation Rank	$\mathrm{C}_{\mathrm{G}}(\mathrm{t})$
M_{11}	3 A	440	30	$\mathrm{C} 3 \times \mathrm{S} 3$
M_{12}	3 A	1760	44	$((\mathrm{C} 3 \times \mathrm{C} 3): \mathrm{C} 3): \mathrm{C} 2$
M_{12}	3 B	2640	87	$\mathrm{C} 3 \times \mathrm{A} 4$
M_{22}	3 A	12320	364	$\mathrm{C} 3 \times \mathrm{A} 4$
M_{23}	3 A	56672	356	$\mathrm{GL}(2,4)$
M_{24}	3 A	226688	272	$\mathrm{C} 3 . \mathrm{A} 6$
M_{24}	3 B	485760	1018	$\mathrm{C} 3 \times \mathrm{PSL}(3,2)$

II. COMPUTATIONAL METHOD

Let $\mathrm{x} \in \Delta_{i}(\mathrm{t})$ and $\mathrm{z} \in \mathrm{C}_{\mathrm{G}}(\mathrm{t})$ one can see immediately that $\mathrm{x}^{\mathrm{z}} \in \Delta_{\mathrm{i}}(\mathrm{t})$. Thus for a finite group G , each disc $\Delta_{\mathrm{i}}(\mathrm{t})$ of the commuting graph $C(G, X)$ is a union of specific $C_{G}(t)$-orbits.
The size of $\mathrm{C}_{\mathrm{G}}(\mathrm{t})$-orbits under the action of conjugation on t^{G} can be calculated by using the character table of the group, as we can see in the following result:

Proposition 2.1. [12] Let G be a group acting transitively on a finite set Ω, with a permutation character χ. Suppose that $\alpha \in \Omega$ and that G_{α} has exactly k orbits on Ω. Then $<\chi, \chi>=\mathrm{k}$.

The quantity k in Proposition 2.1 is called the permutation rank of G_{α} on Ω. Therefore, the permutation rank of $\mathrm{C}_{\mathrm{G}}(\mathrm{t})$ on X is the number of $\mathrm{CG}(\mathrm{t})$-orbits under the conjugation action on X .

Now, let C be a G-conjugacy class. It is obvious that the set $\mathrm{XC}=\{\mathrm{x} \in \mathrm{X}: \mathrm{tx} \in \mathrm{C}\}$ under the conjugation action of $C G(t)$-breaks up into sub orbits. Thus to find all the sub orbits of X, we have to identify the $C G(t)$-orbits of $X C$, for all those C such that $\mathrm{X}_{\mathrm{C}} \neq \emptyset$.

Let C_{i}, C_{j} and C_{k} be the conjugacy classes of a finite group G. Then for a fixed element $g \in C_{k}$, define the set $\mathrm{a}_{\mathrm{ijk}}=\left|\left\{\left(\mathrm{g}_{\mathrm{i}}, \mathrm{g}_{\mathrm{j}}\right) \in \mathrm{C}_{\mathrm{i}} \times \mathrm{C}_{\mathrm{j}} \mid \mathrm{g}_{\mathrm{i}} \mathrm{g}_{\mathrm{j}}=\mathrm{g}\right\}\right|$.

Then for all possible $\mathrm{i}, \mathrm{j}, \mathrm{k}$ the value $\mathrm{a}_{\mathrm{ijk}}$ is called a class structure constant for G .
The next lemma will be used to compute the class structure constants for G
Lemma 2.3. [13] Let G be a finite group with n conjugacy classes $C_{1}, C_{2}, \ldots, C_{n}$. Then for all i, j, k we have g_{i}

$$
\mathrm{a}_{\mathrm{ijk}}=\frac{|G|}{\left|C_{G}(g i)\right|\left|C_{G}(g j)\right|} \Sigma_{\chi \in \operatorname{Ir}(G)} \frac{\chi(g i) \chi(g j) \overline{\chi(g k)}}{\chi(I)}
$$

Where $\mathrm{g}_{\mathrm{i}}, \mathrm{g}_{\mathrm{j}}$ and g_{j} are respectively in $\mathrm{C}_{\mathrm{i}}, \mathrm{C}_{\mathrm{j}}$ and C_{k}, and $\chi \in \operatorname{Irr}(G)$ be the irreducible character table in G .
We should not that $\left|X_{C}\right|=|\{(c, x) \in C x X \mid c x=t\}|=\left|a_{i j k}\right|$. Then by employing Lemma 2.3 we get

$$
\left|\mathrm{X}_{\mathrm{C}}\right|=\frac{|G|}{\left|C_{G}(\mathrm{~g})\right|\left|C_{G}(\mathrm{t})\right|} \quad \sum_{\chi \varepsilon \operatorname{lrr}(G)} \frac{\chi(g) \chi(t)^{2}}{\chi(I)}
$$

Therefore, from the complex character table of G, which is available in GAP character table library, and using the GAP function "Class Multiplication Coefficient" we immediately obtain the size of X_{C}.

III. DIAMETERS, GIRTHS AND CLIQUES NUMBER

To determinate the girths and the cliques number for the $C(G, X)$ we will use the fact that the graph is regular to generated the graph by using the gap package YAGS [14] (specifically GraphByRelation) on the connected component which contains t. This will provide us the Girths and Cliques Number. in the next algorithm which can be realized by using the definition of the commuting graph. The algorithm is given as follows:

Algorithm 1
Input: The group $\mathrm{G}, \mathrm{t} \in \mathrm{G}$ (the elements of order 3$)$;
i: $\mathrm{X} \leftarrow \mathrm{t}^{\mathrm{G}}:$ the G-conjugacy class of t meet the centralizer in G of t.
ii: $\operatorname{Rel} \leftarrow\{$ the set of elements satisfies the condition $: \mathrm{x} \neq \mathrm{y}$ and $\mathrm{x} * \mathrm{y}=\mathrm{y} * \mathrm{x}\}$
iii: $C(\mathrm{G}, \mathrm{X}) \leftarrow \mathrm{GraphByRelation(Rel,X})$.
v: Grith $\leftarrow \mathrm{Girth}(\mathrm{C}(\mathrm{G}, \mathrm{X})) \& \omega(C(\mathrm{G}, \mathrm{X})) \leftarrow$ Clique number $(\mathrm{C}(\mathrm{G}, \mathrm{X}))$.
Output: Girth and the clique number of $\mathrm{C}(\mathrm{G}, \mathrm{X})$.

The next table yields by applying Algorithm 1 on the group in Table 1:

Table 2. Girth and cliques number			
Graph	Girth	clique number	clique group
$C\left(\mathrm{M}_{11}, 3 \mathrm{~A}\right)$	3	8	$\mathrm{C}_{3} \times \mathrm{C}_{3}$
$C\left(\mathrm{M}_{12}, 3 \mathrm{~B}\right)$	3	8	$\mathrm{C}_{3} \times \mathrm{C}_{3}$
$C\left(\mathrm{M}_{12}, 3 \mathrm{~A}\right)$	3	6	$\mathrm{C}_{3} \times \mathrm{C}_{3}$
$C\left(\mathrm{M}_{22}, 3 \mathrm{~A}\right)$	3	8	$\mathrm{C}_{3} \times \mathrm{C}_{3}$
$C\left(\mathrm{M}_{23}, 3 \mathrm{~A}\right)$	3	8	$\mathrm{C}_{3} \times \mathrm{C}_{3}$
$C\left(\mathrm{M}_{24}, 3 \mathrm{~A}\right)$	3	8	$\mathrm{C}_{3} \times \mathrm{C}_{3}$
$C\left(\mathrm{M}_{24}, 3 \mathrm{~B}\right)$	3	6	$\mathrm{C}_{3} \times \mathrm{C}_{3}$

The last column of the Table 2 represented the maximum elementary abelian group generated by the maximum clique.

IV. ANALYZING THE DISCS STRUCTURES

This section dedicated to analyzing the structures of the $\Delta_{i}(\mathrm{t})$ of the commuting graph $C(\mathrm{G}, \mathrm{X})$.

4.1. $C_{G}(t)$-Orbits of $\Delta_{i}(t)$

The next algorithm employed to break $\Delta_{i}(\mathrm{t})$ into $\mathrm{C}_{\mathrm{G}}(\mathrm{t})$-sub orbits of X_{C}, for all those C (G -Conjugacy class) such that $X_{C} \neq \varphi$ and provided their sizes.

```
Algorithm 2
Input: the group \(\mathrm{G}, \mathrm{t} \in \mathrm{G}\), (the elements of order 3), C (G-Conjugacy Class)
i: \(\mathrm{X} \leftarrow \mathrm{t}^{\mathrm{G}}\) the G-conjugacy class of t
ii: \(\mathrm{C}_{\mathrm{G}}(\mathrm{t}) \leftarrow\) centralizer in G of t .
iii: \(\mathrm{O} \leftarrow\) the orbits in \(\mathrm{C}_{\mathrm{G}}(\mathrm{t})\) of X .
iv: \(\left|\mathrm{X}_{\mathrm{C}}\right| \leftarrow\) "Class Multiplication Coefficient" of C in X.
\(v\) : For \(\mathrm{i} \rightarrow 1\) to size (O) Do
vi: If \(t * O[i][1]\) Conjugate to \(\mathrm{C} \rightarrow \mathrm{Y}_{\mathrm{C}} \cup \mathrm{O}[\mathrm{i}]\)
vii: Repeat the steps vi, vii until \(\left|\mathrm{X}_{\mathrm{C}}\right|=\left|\mathrm{Y}_{\mathrm{C}}\right|\).
viii: \(\mathrm{X}_{\mathrm{C}} \leftarrow \mathrm{X}_{\mathrm{C}}=\mathrm{Y}_{\mathrm{C}}\).
ix: For \(\mathrm{j} \rightarrow 1\) to size O Do
\(x\) : If \(t\) in \(O[j] \rightarrow t=O_{j}\) (there is only one)
xi: \(Y_{0} \leftarrow Y_{0} U j\)
xii: For i in \(\mathrm{O}[\mathrm{j}]\) Do
xiii: For \(h \rightarrow 1\) to size (O) Do
xiv: If \(\mathrm{d}(\mathrm{O}[\mathrm{h}][1], \mathrm{i})=1 \rightarrow\left\{\mathrm{Y}_{1} \cup\{\mathrm{~h}\}\right\} \backslash\left\{\mathrm{Y}_{0}\right\}\)
\(x v\) : For \(x\) in \(Y_{1} \rightarrow \Delta_{1}(t) \cup O[x]\)
xvi : for j in \(\mathrm{Y}_{1}\) Do
xvii: Repeat the steps x1, x2 and
xviii: If \(d(O[h][1], i)=1 \rightarrow\left\{\mathrm{Y}_{2} \cup\{\mathrm{~h}\}\right\} \backslash\left\{\mathrm{Y}_{1} \cup \mathrm{Y}_{0}\right\}\)
\(x i x:\) For x in \(\mathrm{Y}_{2} \rightarrow \Delta_{2}(\mathrm{t}) \cup \mathrm{O}[\mathrm{x}]\)
\(x x\) : Repeat the above steps and replace the \(\mathrm{Y}_{\mathrm{i}+1}\) with \(\mathrm{Y}_{\mathrm{i}}\) and \(\Delta_{i+1}(\mathrm{t})\) with \(\Delta_{i}(\mathrm{t})\).
Output: The positions the sets \(X_{C}\) in the \(\Delta_{i}(\mathrm{t})\) with their sizes.
```

For each graph in Table 2 we provide information about the discs structure. We should note that in the next tables the value $\mathrm{n} * \mathrm{~m}$ means the number and the size of $\mathrm{C}_{\mathrm{G}}(\mathrm{t})$-orbits in certain $\Delta_{\mathrm{i}}(\mathrm{t})$, respectively. The exceptional case is $\mathrm{C}\left(\mathrm{M}_{11}, 3 \mathrm{~A}\right)$ as the graph is disconnected:

1-C $\left(\mathrm{M}_{11}, 3 \mathrm{~A}\right)$: Form Table 1 permutation rank of 3 A is 30 and $\mathrm{C}_{\mathrm{G}}(\mathrm{t}) \cong \mathrm{C}_{3} \times \mathrm{S}_{3}$. In Table 2 one can see that the graph is disconnected and by Algorithm 2 there are 55 connected 8-components of $C\left(\mathrm{M}_{11}, 3 \mathrm{~A}\right)$.

2- C (M12, 3A): Form Table 1 permutation rank of 3A is 44. Form Table $\mathbf{2}$ the graph is connected with diameter 6. The centralizer of $t \in 3 \mathrm{~A}$ isomorphic to $\left(\left(\mathrm{C}_{3} \times \mathrm{C}_{3}\right): \mathrm{C}_{3}\right): \mathrm{C}_{2}$. The structure of the $C\left(\mathrm{M}_{12}, 3 \mathrm{~A}\right)$ can be seen in the following table:

Table 3. Discs structure of C(M $\left.\mathbf{M}_{12}, \mathbf{3 A}\right)$						
Class Name	$\Delta_{1}(\mathrm{t})$	$\Delta_{2}(\mathrm{t})$	$\Delta_{3}(\mathrm{t})$	$\Delta_{4}(\mathrm{t})$	$\Delta_{5}(\mathrm{t})$	$\Delta_{6}(\mathrm{t})$
1A	1					
2A						$9 * 2$
2B						27
3A	$6 * 2$					$9^{*}, 27$
3B		$18,{ }^{*} 2$				
4A			27			54
4B			27			54
5A				$54 * 2$	$54 * 4$	$54 * 2$
6A						$54 * 2$
6B			$27, * 2$	$54 * 4$		
8A					$54 * 4$	
8B					$54 * 4$	
11A					54	54
11B					54	54

Table 4. Discs structure of $\boldsymbol{C}\left(\mathrm{M}_{12}, 3 \mathrm{~B}\right)$

CLASS NAME	$\Delta_{1}(\mathrm{t})$	$\Delta_{2}(\mathrm{t})$	$\Delta_{3}(\mathrm{t})$	$\Delta_{4}(\mathrm{t})$	$\Delta_{5}(\mathrm{t})$	$\Delta_{6}(\mathrm{t})$
1A	1					
2A		12,12				
2B						
3A	4,4	12,12		36,36		18
3B	4,4	12,12		36	36,36	
4A				36	36,36	
4B				$36,36,36$		18
5A				$36,36,36$		
6A		12,12		36,36		36,36
6B			$36,36,36,36$	$36,36,36,36$	$36,36,36,36$	
8A				$36,36,36,36$	$, 36,36,36,36$	
8B				$36,36,36,36$	$36,36,36,36$	
10A				$36-36-36-36$		
11A			$36,36,36$	36	$36,36,36,36$	
11B			$36,36,36$	36	$36,36,36,36$	

International Journal of Psychosocial Rehabilitation, Vol. 24, Issue 08, 2020
ISSN: 1475-7192
3- $C\left(\mathrm{M}_{12}, 3 \mathrm{~B}\right)$: Form Table 1 permutation rank of 3B is 87 . Form Table 2 the graph is connected with diameter 6. The centralizer of $\mathrm{t} \in 3 \mathrm{~B}$ isomorphic to $\mathrm{C}_{3} \times \mathrm{A}_{4}$. The structure of the $C\left(\mathrm{M}_{12}, 3 \mathrm{~B}\right)$ can be seen in the following table:

4- $C\left(\mathrm{M}_{22}, 3 \mathrm{~A}\right)$: Form Table 1 permutation rank of 3A is 364. Form Table 2 the graph is connected with diameter 6 . The centralizer of $t \in 3 \mathrm{~A}$ isomorphic to $\mathrm{C}_{3} \times \mathrm{A}_{4}$. The structure of the $C\left(\mathrm{M}_{22}, 3 \mathrm{~A}\right)$ can be seen in the following table:

Table 5. Discs structure of C($\left.\mathbf{M}_{22}, 3 \mathrm{~A}\right)$						
CLASS NAME	$\Delta_{1}(\mathrm{t})$	$\Delta_{2}(\mathrm{t})$	$\Delta_{3}(\mathrm{t})$	$\Delta_{4}(\mathrm{t})$	$\Delta_{5}(\mathrm{t})$	$\Delta 6$ (t)
1A	1					
2A		$3,2 * 12$	36	36	18	18
3A	6*4	6*12,3,2*12	36	7*36	10*36,18	
4A				8*36	6*36	
4B			14*36	6*36	8*36	
5A			14*36	$28 * 36$	58*36	
6A		6*12	6*36	8*36		18
7A				31*36	17*36	
7B				31*36	17*36	
8A	Tabte 6. Dises structure of $\mathrm{C}_{8}\left(* \mathbf{M}_{3} 6^{3}, 3 \mathrm{BA}\right) 16 * 36$					
	$\Delta_{1}(t) \quad \Delta_{2}(t)$		$\Delta_{3}\left(\mathrm{t} \mathrm{t}_{8} \times 36\right.$		11*36	
ITB				8*36	11*36	
1 A	1					
2 A		15*2,60	90			
3A	20*3	$60 * 7,15 * 2$	180,90		$180 * 3,90 * 4$	
4A			$180 * 13,90 * 2,45$		$180 * 6,90 * 3$	
5A		60*3	180*15		180*41	
6A		60*6	180*16,90*4,45		180*4,90	
7A			180*13,90*2		180*21,90*3	
7B			180*13,90*2		180*21,90*3	
8A			180*8,90*2		180*20,90*2	
11A			180*6		180*19	
11B			$180 * 6$		180*19	

5- $C\left(\mathrm{M}_{23}, 3 \mathrm{~A}\right):$| 14 A | | 90 | $180 * 8$ |
| :---: | :---: | :---: | :---: |
| Form Table 1 | | | | permutation rank of 3 A is 356 . Form Table 2 the graph is connected with diameter 4 . The centralizer of $\mathrm{t} \in$ 3Aisomorphic to $\mathrm{GL}(2,4)$. The structure of the $C\left(\mathrm{M}_{23}, 3 \mathrm{~A}\right)$ can be seen in the following table:

14B			90	$180 * 8$
15 A		$60 * 3$	$180 * 2$	$180 * 6$
15B		$60 * 3$	$180 * 2$	$180 * 6$
23A			$180 * 4$	$180 * 2$
23B			$180 * 4$	$180 * 2$

6-C($\left.\mathrm{M}_{24}, 3 \mathrm{~A}\right)$: Form Table $\mathbf{1}$ permutation rank of 3A is 272. Form Table $\mathbf{2}$ the graph is connected with diameter 4. The centralizer of $t \in 3 \mathrm{~A}$ isomorphic to C_{3}. A_{6}. The structure of the $C\left(\mathrm{M}_{24}, 3 \mathrm{~A}\right)$ can be seen in the following table:

Table 7. Discs structure of $\boldsymbol{C}\left(\mathrm{M}_{24}, 3 \mathrm{~A}\right)$				
CLASS NAME	$\Delta_{1}(\mathrm{t})$	$\Delta_{2}(\mathrm{t})$	$\Delta_{3}(\mathrm{t})$	$\Delta_{4}(\mathrm{t})$
1A	1			
2A		45-90	135	
2B				18-45
3A	120	$360 * 3,45,90$	1080-135	4*180,45,18
3B		360		
4A				135,135
4B			1080*3,540*8,270	1080,270
4 C				180*4
5A		360*3	1080*9-	1080*12
6A		360*3	1080*9,540*8-270	1080*2,270,135*2
6B			1080	1080
7A			1080*6--540*6	1080*8,180*3
7B			1080*6--540*6	1080*8,180*3
8A			1080*7-540*2	1080*9,540*2
10A			1080*2	
11A			1080*20	1080*12
12A			540*4	
12B			1080*2	1080*2
14A			1080*4,540*3	1080*4
14B			1080*4,540*3	1080*4

International Journal of Psychosocial Rehabilitation, Vol. 24, Issue 08, 2020
ISSN: 1475-7192

15 A	$360 * 3$	$1080 * 7$	$1080 * 4$	
15 B		$360 * 3$	$1080 * 7$	$1080 * 4$
21 A		$1080 * 3$		
21 B			$1080 * 3$	
23 A			$1080 * 6$	1080
23B			$1080 * 6$	1080

6-C $\left(\mathrm{M}_{24}, 3 \mathrm{~B}\right)$: Form Table 1 permutation rank of 3B is 1018. Form Table 2 the graph is connected with diameter 5. The centralizer of $\mathrm{t} \in 3 \mathrm{~B}$ isomorphic to $\mathrm{C}_{3} \times \operatorname{PSL}(3,2)$. The analyzing of the $C\left(\mathrm{M}_{24}, 3 \mathrm{~B}\right)$ can be seen in the following table:

Section 5. Main

The
graph $C\left(\mathrm{M}_{11}, 3 \mathrm{~A}\right)$ with 55 components as connected involution graph the Table 2, the described in theorem:

Theorem

 the groups of the following-Diam
and $\left|\Delta_{1}\right|=13,\left|\Delta_{2}\right|$ $,\left|\Delta_{4}\right|=324,\left|\Delta_{5}\right|$
-Diam
and $|\Delta 1|=17,|\Delta 2|$
$,|\Delta 4|=1080,|\Delta 5|$
-Diam
and $|\Delta 1|=26 ; \mid \Delta 2$ 1296; $|\Delta 4|=$

Table 8. Discs structure of $\mathbf{C}\left(\mathbf{M}_{24}, \mathbf{3 B}\right)$					
CLASS NAME	$1(\mathrm{t}) \Delta$	$(\mathrm{t}) \Delta$	$(\mathrm{t}) \Delta$	$4(\mathrm{t}) \Delta$	$5(\mathrm{t}) \Delta$
1A	1				
2A			21	42	
2B	56	168,42		126	
3A	56	$6 * 168$		168	
3B		$5 * 168,42$	$504,2 * 168,21$	$168,126,42$	
4A				$2 * 126$	
4B			$9 * 504$	$2 * 126$	
4C		$4 * 168$		$8 * 504$	
5A			$22^{* 504}$	$4 * 504,2 * 168$	42,126
6A			$23 * 504,2 * 168$	$22 * 504,168$	
6B		$2 * 168$	$8 * 504$	$20 * 504,4 * 126$	
7A		$168 * 3$	$5 * 504$	$12 * 504$	
7B		$168 * 3$	$5 * 504$	$12 * 504$	
8A			$8 * 504$	$32 * 504$	
10A			$6 * 504$	$40 * 504,4 * 126$	
11A			$43 * 504$	$89 * 504$	
12A			$24^{* 504}$	$36^{* 504}$	
12B		$4 * 168$	$56 * 504$	$60 * 504$	
14A			$32 * 504$	$50 * 504$	
14B			$32 * 504$	$50 * 504$	
15A			$26 * 504$	$37 * 504,3 * 168$	
15B			$26 * 504$	$37 * 504,3 * 168$	
21A		$3 * 168$	$16 * 504$	$19 * 504$	
21B		$3 * 168$	$16 * 504$	$19 * 504$	

Theorem

commuting is disconnected connected 8seen above. For a commuting $C(\mathrm{G}, \mathrm{X})$, given in graph structure following
3.1: For G one of Table2, we have results:
$C\left(\mathrm{M}_{12}, 3 \mathrm{~A}\right)=6$
$=36 \quad,\left|\Delta_{3}\right|=108$
$=756\left|\Delta_{6}\right|=522$.
$C(\mathrm{M} 12,3 \mathrm{~B})=6$
$=96,|\Delta 3|=432$
$=906|\Delta 6|=108$.
$C(M 22,3 A)=6$
$=198 ;|\Delta 3|=$

$5184,\|\Delta 5\|=$	23A		15*504	9*504	$\begin{aligned} & 5580,\left\|\Delta_{6}\right\|=36 . \\ & C(\mathrm{M} 23,3 \mathrm{~A})=4 \end{aligned}$
Diam	23B		15*504	9*504	
and $\|\Delta 1\|=61 ;\|\Delta 2\|=1440 ;\|\Delta 3\|=20430 ;\|\Delta 4\|=$					
34740.					
- Diam $C(\mathrm{M} 24,3 \mathrm{~A})=4$ and $\|\Delta 1\|=123,\|\Delta 2\|=6030,\|\Delta 3\|=137970,\|\Delta 4\|=$					
82566.					
- Diam C(M24; 3B) = 6 and $\|\Delta 1\|=113,\|\Delta 2\|=5796 ;\|\Delta 3\|=191226,\|\Delta 4\|=$					
288456, $\left\|\Delta_{5}\right\|=$					

Proof. Each of $\Delta_{i}(t)$ of the commuting graph $\mathrm{C}(\mathrm{G} ; \mathrm{X})$ is a union of specific $\mathrm{C}_{\mathrm{G}}(\mathrm{t})$ - orbits. Thus using the previous tables, we obtain the proof.

REFERENCES

1. R.Brauer and K. A .Fowler, "On Groups of Even Order",Ann. of Math., Vol. 62, no. 3.565-583, 1955.
2. S.Rapinchuk, Y.Segev and M.Seitz, "Finite quotients of the multiplicative group of a finite dimensional division algebra are solvable", J. Amer. Math. Soc., 15(4) 929-978, 2002.
3. C.Bates, D.Bundy, S.Hart, and P.Rowley,"Commuting involution graphs for sporadic simple groups", J. Algebra,316(2): 849-868, 2007.
4. C.Bates, D.Bundy, S.Hart, and P.Rowley,"Commuting involution graphs for finite Coxeter groups", J. Group Theory,6(4):461-476,2003.
5. C.Bates, D.Bundy, S.Hart, and P.Rowley,"Commuting involution graphs for symmetric groups", J. Algebra, 266(1) .133-153, 2003.
6. C.Bates, D.Bundy, S.Hart, and P.Rowley,"Commuting involution graphs in special linear groups", Comm. Algebra, 32(11)4179-4196,2004.
7. A.Nawawi, and P.Rowley, "On commuting graphs for elements of order 3 in symmetric groups", PhD thesis,University of Manchester. 2012.
8. . J. Brinkman, W. Bosma, J. Cannon and C. Playoust,"The Magma algebra system. I.The user language", J. Symbolic Comput. 24(3-4) 235-265, 1997.
9. The GAP Group.,"GAP Groups, Algorithms, and Programming",. Version 4.4.12, http://www.gapsystem.org, 2008.
10.J. Tripp, I. Suleiman, S. Rogers R. Parker, S. Norton, S. Nickerson, S. Linton,
11.J. Bray, A. Wilson and P. Walsh, "A world wide web atlas of group representations"., http://brauer.maths.qmul.ac.uk/Atlas/v3/.
12.H. Conway, R. T. Curtis, S. P .Norton and R. A. Parker," ATLAS of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups", Oxford. Clarendon press.1985.
13..I.M. Isaacs,"Character theory of finite Simple group. New York. Academic Press", 1976.
14.D.Gorenstein, "Finite Groups. 2nd ed, Chelsea, Chelsea Publishing Company",1980.
15.C. Cedillo, R. MacKinney-Romero, M.A. Pizaa, I.A. Robles and R. Villarroel-Flores,"Yet Another Graph System, YAGS", Version 0.0.5. http://xamanek.izt.uam.mx/yags/. 2019.

[^0]: ${ }^{1}$ Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq, it2017it@yahoo.com
 ${ }^{2}$ Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq,aubad@scbaghdad.edu.iq

