
International Journal of Psychosocial Rehabilitation, Vol. 24, Issue 08, 2020 

ISSN: 1475-7192 

Received: 21 Dec 2019 | Revised: 18 Jan 2020 | Accepted: 05 Feb 2020                          12583  

 

Stochasticity of two preys and one predator 

environmental framework utilizing Fourier tool 
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ABSTRACT--This article manages an investigation on numerical model of an ecological system with two 

prey, one predator and also within the sight of arbitrarily fluctuating main impetuses on the development of the 

species at time 't' of a customary eco framework. The model is depicted by a couple of non-direct differential 

conditions. Stochastic steadiness, as far as the fluctuations of the populaces of the given framework is inferred by 

using Fourier transform tool.
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I. INTRODUCTION 

Demonstrating the changing parts of a biology framework is the best beneficial way to deal with capture the 

complexity of characteristic environmental factors i.e examining the collaborations among species and 

development of the species populace. The prey-predator standards were first exhibited by Lotka-Volterra [1-5]. 

They utilized basic reaction work corresponding to the quantity of predators. In prey-predator models, species 

typically follow distinctive development capacities and among these [6-8], Logistic development work is 

significant one, which was first utilized by Verhulst [2] for humanoid development. Moreover Feller [9] assumed 

that pretty much every mass that builds asymptotically will reasonable to the Logistic development rule to some 

augmentation. There likewise exist some extra development capacities proposed by Gompertz [10], May [11]. 

There are a few sorts of reaction capacities, for example, proportion subordinate, Holling types reaction capacities 

[12], Michaelis Menten type, Beddington-DeAngelis [13,14] reaction work, and so on. Numerical models of 

natural plans, mirroring these stresses, have been prosecuted to look at the unfaltering quality of a decent variety 

of frameworks. For instance, see [15-24]. The vivacious affiliation concerning executioner and their casualty has 

for quite some time been and will suffer to be one of the main topics in environment because of its broad criticalness 

[17]. Different extraordinary works have been accomplished for the Lotka–Volterra type predator–prey plot yet 

significant uncertainties and errors in explanation incited out this training. In ref. [18], Holling suggested that there 

exist three useful reaction of the predator which generally called Holling type I, Holling type II and Holling type 

III [25]. Samantha et al [23] proposed a scientific model for a prey predator model and they examined the steadiness 

about inside balance point. Due to this inspiration, we built the accompanying stochastic model and furthermore 

examined the soundness at inside consistent state alongside some numerical reproductions. 
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II. STOCHASTIC ANALYSIS 

This segment is intended for the augmentation of the deterministic model of [23], which is framed by including 

loud term. There are a few manners by which natural clamour might be fused in an environmental framework. 

Outer commotion may emerge from irregular changes of limited number of parameters around some known mean 

estimations of the populace densities. Since the oceanic biological system which consistently has unsystematic 

variances of the earth, it is hard to characterize the standard marvel as a deterministic perfect. The stochastic 

examination benefits us to get an additional instinct about the constant changing parts of any environmental unit. 

The two prey species develop strategically and direct challenge is considered between them. A pictorial 

representation of this biological phenomenon is as below in figure (2.1). 

 

 

Figure-(2.1) 

The deterministic model given by [23] is stretched out with the impact of irregular commotion of the ecological 

outcomes in a stochastic framework given beneath. 
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where ( )x t , ( )y t and ( )z t  indicate the populace thickness of first prey, second prey and predator 

individually. We expect that the development of the subsequent prey is exponential, so there is a colossal stock of 

the second prey in the populace without predator. In this manner, there is no scanning time of the predator for the 

subsequent prey. Here 1, , , , , , , , , ,r K a b c m       are on the whole positive. 1,r K  individually speak to the 

inborn development rate and conveying limit of the principal prey. speak to the inherent development rate and 

predation pace of the second prey separately.   is the effectiveness with which the subsequent prey devoured by 

the predator gets changed over into predator biomass and is the passing pace of the predator without prey, 

1 2 3
, ,    are the genuine constants and

1 2 3
( ) [ ( ), ( ), ( )]

i
t t t t    is a three dimensional Gaussian white noise 
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process fulfilling ( ( )) 0;iE t  1, 2, 3;i  [ ( ) ( )]i jE t t  ( );ij t t    1, 2, 3i j   where ij is the 

Kronecker delta function; is the Dirac delta function. Where ij is the Kronecker sign;   is the  -dirac 

function. All other parameters have their own usual meanings [23] 

Let      
*

1( ) ( ) ;x t u t S  *

2( ) ( ) ;y t u t P  *

3( ) ( ) ;z t u t T                (2.4) 

Then  1 2 3( ) ( ); ( ) ( ); ( ) ( )x t u t y t u t z t u t                                                                            (2.5)               

Utilizing (2.4) and (2.5), the linear parts of (2.1), (2.2) and (2.3) are 

* *1
1 1 3 1 1( ) ( ) ( ) ( )

r
u t u t S cu t S t

K
                     (2.6) 

2 2 2( ) ( )u t t                                                                                       (2.7) 

* *

3 1 2 3 3( ) ( ) ( ) ( )u t bu t T u t T t                                                                             (2.8) 

Taking the Fourier transform on the two sides of (2.6), (2.7), (2.8) we get, 
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2 2 2( ) ( )i u    %                                                  (2.10) 

* *

3 2 2 3 3( ) ( ) ( ) ( )i u bT u T u         % % %              (2.11) 

The matrix form of (2.9)-(2.11) is      M u    %%                        (2.12) 

where  
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Equation (2.12) can also be written as         
1

u M   


   
%%                                     (2.13) 

where  
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and where 
2
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Here 
2 2 2

1 1 1A X Y  ; 
2 2 2

1 2 2B X Y  ;
2 2 2

1 3 3C X Y  ;
2 2 2

1 4 4D X Y  ;
2 2 2

1 5 5E X Y  ;

2 2 2

1 6 6F X Y  ;
2 2 2

1 7 7G X Y  ;
2 2 2

1 8 8H X Y  ; 
2 2 2

1 9 9I X Y  ; 
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where 
2
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If the function ( )Y t  has a zero mean value, then the fluctuation intensity (variance) of its components in the 

frequency interval  , d   is ( )YS d  . where ( )YS  is spectral density of Y  and is defined as 
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If  Y  has a zero mean value, the inverse transform of ( )YS  is the auto covariance function  
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The corresponding variance of fluctuations in ( )Y t  is given by  
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and the auto correlation function is the normalized auto covariance 
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For a Gaussian white noise process, it is  
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From (2.14), we have      
3

1
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From (2.19) we have    
3
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where      
1

ijK M 


     

Hence by (2.21) and (2.22), the intensities of fluctuations in the variable ; 1,2,3iu i   are given by 

3
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and from  (2.14), (2.15), (2.23) we obtain   
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     
1

2 2 2 2 2 2 2

1 1 1 2 2 2 3 3 32 2

1 1

2 ( ) ( )
u X Y X Y X Y d
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1 1
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where ( ) ( ) ( )M R iI    .  If we are interested in the dynamics of system (2.1)-(2.3) with either 1 0   

or 2 0   or 3 0  , then the population variances are as follows.  
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If  2 0  , 3 0  , then 
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The conditions (2.24)- (2.26) give three varieties of the occupants. The combinations over the genuine line can be 

evaluated which gives the varieties of the occupants. 

 

III.  NUMERICAL SIMULATIONS 

Now it is required to approve our investigative discoveries through numerical re-enactments by thinking about 

the accompanying parameters: 

Example 1:  

For the parameters 3.5; 0.2; 0.7; 0.9; 1.2;r K a b c      0.1; 0.7;    0.2;  0.6;   

0.36;  0.2;m   with  
1 2 31,  2,  3     , figure 1(a) represents the variations of populations against 

time and figure 1(b) represents phase portrait diagram among species. 
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                      Figure 1(a)                                                        Figure 1(b) 

 

 

Example 2: For the parameters  

 

3.5; 0.2; 0.7; 0.9; 1.2; 0.1; 0.7; 0.2;r K a b c           0.6;  0.36;  0.2;m   

with  
1 2 310,  20,  30     , figure 2(a) represents the variations of populations against time and figure 

2(b) represents phase portrait diagram among species. 

 

 

 

              

                        Figure 2(a)                                                        Figure 2(b) 

 

 

Example 3: For the parameters  

 

3.5; 0.2; 0.7; 0.9; 1.2; 0.1; 0.7; 0.2;r K a b c           0.6;  0.36;  0.2;m   

with  
1 2 330,  40,  50     , figure 3(a) represents the variations of populations against time and figure 

3(b) represents phase portrait diagram among species. 
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                        Figure 3(a)                                                        Figure 3(b) 

 

IV.  CONCLUDING REMARKS 

In this article, we have examined stochastic strength of two prey and one predator around inside consistent 

state. We additionally infer that the consideration of stochastic irritation makes a critical change in the force of 

populaces because of progress of responsive parameters causes clamorous elements with low, medium and high 

differences of motions from figures (1(a), 1(b), 2(a), 2(b), 3(a), 3(b)). 
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