Rough Set Theory in Intelligent Information Retrieval: A Comprehensive Survey

¹*Anil Sharma, ²Suresh Kumar

ABSTRACT — Today online resources are the largest pool of information in terms of volume, but still users are struggling to get relevant information. Information retrieval systems suffers mainly due to two reasons: first, information overload problem, and second, vagueness and imprecision prevailing in document representations as well as in the information need description by the users. The ability to handle vague, incomplete and imprecise information laid the foundation for applying rough set theory in various domains related to artificial intelligence including information retrieval. In this survey, we have focused on rough set and its generalization models applied in information retrieval. Some existing surveys tried to comprehend rough set based information retrieval models, their basic approaches, key features, strengths and limitations. A comparison of reviewed frameworks is also included for critical analysis.

Keywords— Rough Set Theory, Rough Extension models, Information Retrieval, Equivalence Relation, Rough Approximations.

I. INTRODUCTION

Rough Set Theory (RST) is a computational intelligence technique for handling vagueness and uncertainty in information [1]. RST is used to approximate definite and possible sets from given data. The concept of indiscernibility is central to RST. Two objects are considered as indiscernible if one cannot distinguish between two objects based on given set of attributes. This indiscernibility relation is represented by a binary equivalence relation on the universe. RST proposed by Pawlak [1] is not related to degree of belongingness but vagueness. This concept is based in boundary region (BoR) of a set. Rough set (RS) has non-vacant boundary region that signifies partial knowledge about the set.

A rough set is approximated using two precise sets known as lower and upper approximations. These rough approximation sets partition the universe of objects into pairwise disjoint regions [2, 3] namely positive region, boundary region and negative region. An empty BoR of a set indicates a precisely defined set, whereas a non-empty BoR signifies an imprecisely defined set due to insufficient knowledge.

¹University School of Information, Communication and Technology, Guru Gobind Singh Indraprastha University, Delhi, India,anilsharma@aiactr.ac.in

² Department of Computer Science & Engineering, Ambedkar Institute of Advanced Communication Technologies & Research, Delhi, India, drsureshpoonia@gmail.com

With the availability of information systems in every field, Information Retrieval (IR) has emerged as an area of interest for researchers. Despite of decades of research on the IR, no single proposal has emerged as winner. This indicates the criticality of topic to be taken for further investigations. IR systems suffers mainly due to two reasons: first, information overload problem and second, vague and imprecise specification of information needs by the users. The ability to handle incomplete, vague and imprecise information has laid the foundation for application of RST in various domains such as pattern recognition, feature selection, information retrieval, neural computing, data mining, conflict analysis, machine learning and so on [4 -10].

1.1 Motivation of the survey

Since the inception of RST, there has been an extensive research on the application of RST in information retrieval. But the literature shows the publications of only a few surveys [11, 12, 13, 14, 15] on the topic. These surveys contribute considerable knowledge in the field but were not thoroughgoing and seems restricted in some aspect.

[11] focused on fuzzy sets and rough sets in information retrieval. Author further discussed the concept of clustering and hierarchical classifications in the context of IR. But inclusion of very few numbers of frameworks in this survey limited its scope. [12] concentrated on IR models based on rough set theory. Author thrown light upon concept of rough set theory and traditional IR models also. Failure to include comparative analysis of cited frameworks and lack of enough number of frameworks are the limitations of this survey. [13] discussed soft-computing based intelligent IR models. Further, application of probability theory, fuzzy sets, genetic algorithm and artificial neural networks in context of soft web mining were also included. Again, surveys were confined in terms of challenges and research gaps. [14] investigated the application of RST in IR. In this survey, research gaps and key features of cited frameworks were discussed, but limited number of proposals were included that refrained the survey from exhibiting describe state-of-art. In [15] author presented basic notion and features of RST. Further extension models of RS, their applications, RST application tools and key issues in applying RST to different domains were discussed.

It is summarized from above discussion that none of the cited proposals exhibit the thorough coverage of RST in IR. This inspired us to present a thoroughgoing and well-structured survey on rough set based intelligent IR models which includes the description of rough set extension models, their taxonomy, limitations and challenges. Table 1 summarizes and reflect comparison of presented proposal with referred work in the context of attributes such as taxonomy, comparative analysis, tabular representation, graphical representation and research directions, where (\checkmark) shows inclusion and (\varkappa) indicates non-inclusion of above attributes in proposal.

		r r r -			
Proposals	Models	Comparative	Tabular	Graphical	Research
	Taxono	Analysis of	Representati	Representatio	Direction
	my	Frameworks	on of Results	n of Results	S
S. Miyamoto [11]	×	×	×	×	×

 Table 1: Present proposal compared with the cited works

Received: 27 Feb 2019 | Revised: 20 Mar 2019 | Accepted: 30 Apr 2020

7106

J. Hua [12]	×	×	×	×	×
Ahmed and Ansari	×	\checkmark	×	×	\checkmark
[13]					
B. Zhou [14]	×	×	×	×	×
Zhang et al. [15]	×	\checkmark	×	×	\checkmark
Present survey	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

1.2 Scope and organization of the survey

The present proposal includes:

- Discussion on rough set theory and its various extension models.
- Tabular representation of Rough set-based IR models for easy grasping of facts.
- Comparison of our proposal with cited surveys in terms of methodology, approach, key features and limitations.

Remainder of the paper is organized as follows: Next section discusses rough set framework. Section 3 throws light on rough set extension models, in which we focused mainly on probabilistic rough set model, decision theoretic rough set model (DTRS), variable precision rough set model (VPRS), Bayesian rough set model (BRSM), fuzzy rough set model (FRSM) and tolerance based rough set model (TRSM). Section 4 explores rough set theory in IR. Section 5 is about discussions and analysis, while Section 6 throws light on conclusions and research directions.

II. ROUGH SET FRAMEWORK

In RST, a non-empty finite set of objects is called universe U. Let R is indiscernibility relation on the universe U and approximation space P_A is represented as (U, R). Essentially, R is equivalence relation that induces partitions of the universe into granules of knowledge knowns as equivalence classes denoted as U/R. The granules containing element x is given by $[x] = \{y \in U \mid xRy\}$. The lower and upper approximations of X \subseteq U are given as [1, 2]:

The lower approximations of set X with respect to (wrt) R is the set of all objects which can be for certain (surely) classified as X wrt R.

$$\underline{P}_{A}(X) = \{x \in U \mid [x] \subseteq X\}$$

The upper approximations of set X with respect to R is the set of all objects which can be possibly (not certainly) classified as X wrt R.

$$\overline{P}_{A}(X) = \{ x \in U \mid [x] \cap X \neq \phi \}$$

The boundary region (BoR_A) of set X with respect to R is the set of all objects which can be classified neither as X nor as \sim X (where \sim X represents complement of X).

$$BoR_{A}(X) = \underline{P}_{A}(X) - \overline{P}_{A}(X)$$

The pair ($\underline{P}_A(X)$, $\overline{P}_A(X)$) represents rough set. Diagram 1 demonstrate the rough approximations of a set X in classical rough set (RS). Each box in the diagram represents granules of knowledge denoted as E, when relation R induces partitions of universe U. The set X is represented by black color oval, where set in dark green color

represents lower approximation of X denote by $\underline{P}_A(X)$. While set in light green color (outside the black oval) signifies upper approximation of X denoted by $\overline{P}_A(X)$ and set in light green color (inside the black oval) shows boundary region denoted by $BoR_A(X)$.

Figure 1: Pawlak's Rough Set

The universe U can be partitioned into three disjoint regions based on rough approximations of X: $POS_A(X)$ the positive region, $BOR_A(X)$ the boundary region, and $NEG_A(X)$ the negative region [3] as:

$$POS_{A}(X) = \underline{P}_{A}(X)$$
$$BoR_{A}(X) = \underline{P}_{A}(X) - \overline{P}_{A}(X)$$
$$NEG_{A}(X) = U - POS_{A}(X) \cup BoR_{A}(X) = U - \overline{P}_{A}(X)$$

If any object is member of target set X, it will be definitely categorized into positive region $POS_A(X)$ of set X. If any object is not a member of set X, it would be definitely categorized into negative region $NEG_A(X)$ of target set X. If we are not certain about belongingness of an object wrt target set X, then it would fall into boundary region $BOR_A(X)$ of target set X.

Limitations: The classical RS was not able to handle certain degree of overlap between set of objects belonging to different equivalence classes. The lack of error tolerance for misclassification of data and a controlled degree of uncertainty remained one of restrictions of classical RS. Further, classical RS depends upon discrete data for approximations and handling of real valued data was outside the realm of this approach, which was another major drawback of classical rough set. To overcome these limitations of classical rough set, many generalization models of classical rough set were developed, which will be in the next section.

III. ROUGH SET EXTENSION MODELS

Motivated by success of classical rough set in data analysis applications, various extensions models [16, 17, 18] of classical rough set were proposed mainly probabilistic rough set model [17, 18], decision theoretic rough set model [19, 20, 21], variable precision rough set model [22, 23, 24], Bayesian rough set model [25, 26, 27], tolerance rough set model [28] and fuzzy rough set model [29,30]. Diagram 2 depicts some of extensions models of classical rough set as shown below.

Figure 2: Rough Set Extension Models

3.1 Probabilistic Rough Set Model

To incorporate probabilistic approach in classical rough set, Wong and Ziarko [17,18] introduced probabilistic approximations in RST. Based on rough membership and rough inclusion [31], both approximations for probabilistic RS can be estimated using conditional probability. Let P (X | [x]) be conditional probability of an object belonging to target set X given that the object belongs to equivalence class [x], where P (X | [x]) can be calculated as:

P (X | [x]) =
$$\frac{|X \cap [x]|}{|[x]|}$$
 where $|X \cap [x]|$ denotes cardinality of set.

The three approximation regions of classical rough set: the positive region $POS_A(X)$, the boundary region $BOR_A(X)$, and the negative region $NEG_A(X)$ can be estimating using conditional probability as:

$$POS_{A}(X) = \{x \in U \mid P(X \mid [x]) = 1\}$$
$$NEG_{A}(X) = \{x \in U \mid P(X \mid [x]) = 0\}$$
$$BoR_{A}(X) = \{x \in U \mid 0 < P(X \mid [x]) < 1\}$$

Based on probability approximations and parameters calculations, three extension of probabilistic rough set were developed. These extensions are the variable precision rough set model [22, 23, 24], decision theoretic rough set model [19, 20, 21] and Bayesian rough set model [25, 26, 27].

3.2 Variable Precision Rough Set Model

Data classification was one of application area where RST was applied successfully. Sensitivity towards noisy data and uncertain information was main limitation of classical RS in handling data classification problems. Ziarko [22] proposed VPRSM to overcome these limitations of classical RS. VPRSM is an extension of classical RS that allows partial set inclusion relation, thus allowing objects to be misclassified under a predefined threshold β where $0 \le \beta < 0.5$. In the light of threshold β , three approximation regions are:

$$POS_{A}(X) = \{x \in U \mid P(X \mid [x]) \ge 1 - \beta \}$$
$$NEG_{A}(X) = \{x \in U \mid P(X \mid [x]) \le \beta \}$$
$$BoR_{A}(X) = \{x \in U \mid \beta < P(X \mid [x]) < 1 - \beta \}$$

In VPRSM, threshold parameter β is estimated by the user. Absence of efficient technique to estimate threshold parameter remained one of the challenges in VPRSM.

3.3 Decision Theoretic Rough Set Model

The Pawlak's RS was intolerant about any classification error in acceptance and rejection decisions. However, some tolerance of accuracy is allowed in probabilistic rough sets. But problem with VPRSM and other probabilistic RS extension models was lack of systematic procedure to estimate threshold parameters. This motivated Yao [19] to propose another generalization of classical RS model known as DTRS. This DTRS model uses loss function and Bayesian decision method to estimate threshold parameters; and loss function is interpreted in terms of costs and risks.

In DTRSM, a pair of probabilistic thresholds α , β were considered with the following conditions: $0 \le \beta < \alpha \le 1$ and $0 \le \alpha, \beta \le 1$. Based on these pair of thresholds, three approximation regions are:

$$POS_{(\alpha,\beta)}(X) = \{ x \in U \mid P (X \mid [x]) \ge \alpha \}$$
$$NEG_{(\alpha,\beta)}(X) = \{ x \in U \mid P (X \mid [x]) \le \beta \}$$
$$BoR_{(\alpha,\beta)}(X) = \{ x \in U \mid \beta < P (X \mid [x]) < \alpha \}$$

For classical RS, we can assume parameters $\alpha = 1$ and $\beta = 0$. In DTRSM, the pair of probabilistic threshold parameters are estimated using Bayesian decision and conditional probability is calculated using naïve Bayesian rough set [26].

3.4 Bayesian Rough Set Model

An extension of VRRSM [22] was developed by Slezak and Ziarko [25] that do not require threshold parameters, rather it exploit probability of occurrence of target event to approximate a set. This model is known as Bayesian rough set model (BRSM). BRSM brings RST and Bayesian reasoning together for approximating a set.

In BRSM framework, the positive region of a set X signifies the area of universe where probability of set X is higher than its prior probability. The negative region of a set X defines the area of universe where probability of set X is lower than its prior probability. The BRS boundary region of a set X defines the area of universe where probability of set X is equal to its prior probability.

 $POS_{BRS}(X) = \cup \{E: P(X | [x]) > P(X)\}$ $NEG_{BRS}(X) = \cup \{E: P(X | [x]) < P(X)\}$ $BoR_{BRS}(X) = \cup \{E: P(X | [x]) = P(X)\}$

Where E represents equivalence class. Non-parametric nature of BRSM make it suitable choice for certain decision making applications that seek certainty gain based on available information.

3.5 Fuzzy Rough Set Model

Classical S was not suitable for handling data analysis on real valued data sets. Amalgamation of fuzzy set theory with RST proposed a generalization of classical RS known as fuzzy rough set model (FRSM). The hybridization of RST with fuzzy set theory resulted in two approaches [33]: first, constructive approach that uses fuzzy equivalence classes to estimate both approximation regions of a set X and second, axiomatic approach that elaborated on mathematical properties of fuzzy RS [29, 30]. FRSM approximations are given as [29]:

$$\underline{P}_{A}(X)(x) = \min \{ \max (1 - R(x, y), X(y)) : y \in U \}$$

$$\overline{P}_{A}(X)(x) = \max \{ \min (R(x, y), X(y)) : y \in U \}$$

Where R is a fuzzy equivalence relation and X is target set. The pair ($\underline{P}_A(X), \overline{P}_A(X)$) is called fuzzy RS.

3.6 Tolerance Rough Set Model (TRSM)

The basic granules of knowledge in classical RS are equivalence relation, which is reflexive, symmetric and transitive in nature. But in TRSM, another relation called tolerance relation (reflexive, symmetric but not transitive) is employed which produces overlapping tolerance classes [28]. Both approximations of a set X in TRSM are estimated as:

$$\begin{array}{l} \underline{P}_{\mathsf{TRSM}}(X) = \{ x \in U \mid T_{\mathsf{R}}(x) \subseteq X \} \\ \overline{P}_{\mathsf{TRSM}}(X) = \{ x \in U \mid T_{\mathsf{R}}(x) \cap X \neq \phi \} \end{array}$$

Where $T_R(x)$ is tolerance class of element x. The pair $(P_T(X), \overline{P}_T(X))$ denotes tolerance RS.

IV. ROUGH SET THEORY IN INFORMATION RETRIEVAL

Dynamic nature of web makes web-based IR systems different from traditional IR systems in terms of knowledge representation, indexing, query expansion and interpretation, retrieving relevant documents, raking and presentation of resultant web pages. Information retrieval models are broadly divided into two categories. First, traditional IR models were based on keyword search and were mainly dependent upon syntactics of search terms. These systems suffered mainly due to two reasons: first, problem of synonyms and polysemy; and second, lack of standards for information representation. Semantics of search terms were ignored in traditional search methods as they focused on syntactic properties of search words.

To handle the issue of vagueness and imprecision, number of proposals for incorporating soft computing techniques in IR were made. Rough set theory backed by robust theoretical foundation is a successful approach to imperfect knowledge. The ability to handle uncertainty in data, capability to model query and documents, estimation of threshold parameters from given data are some of reason behind application of rough set theory in IR. The following selected framework throw light on rough set based IR models in literature.

The classical RS is successfully applied in IR by many researchers [35, 36, 37, 38, 39, 40, 41, 42]. These proposals were based on rough set approximations, rough relations and indiscernibility (equivalence) relation. Additionally, user's relevance feedback was employed to enhance the effectiveness of these IR models [35, 36, 38]. Some authors also introduced formal concept analysis and ontology with rough set approximations in IR proposals. There have been some proposals of introducing generalization of RS models in IR [43, 44, 45, 46]. These proposals incorporated probabilistic approach in classical RS by allowing partial set inclusion relation, thus permitting a control degree of misclassification of data. These proposals were based on conditional probability and threshold parameters; and users were expected to provide threshold parameters which were critical for performance of IR systems.

Some authors proposed fuzzy logic and rough set based IR models [47, 48, 49, 50] by assigning fuzzy weights to documents/queries. Rough set approximations were performed on these weighted documents/queries using fuzzy relations. Tolerance rough set allow overlapping of classes by replacing equivalence relation in classical RS with tolerance relation. In some applications like IR, the transitivity property is not always satisfied by a relation. Literature shows proposals applying tolerance rough set in information retrieval [51, 52, 53, 54, 55]. A detailed analysis and comparison of these cited proposals are discussed in next section.

V. DISCUSSION AND ANALYSIS

This survey presents a comparison of rough set models applied in intelligent IR and their limitations in the context of web search. A comparative analysis of framework surveyed is presented in Table 2. In the survey, we observed how different techniques are employed by these models. The Diagram 4 (a) shows that some of features employed in rough set based IR models are equivalence relations, tolerance relations, classical rough set, rough set extensions, user's relevance feedback and fuzzy hybridization. Furthermore, it can be noticed from Diagram 4 (b) that 29% surveyed models employed equivalence relations whereas 10% used tolerance relations. We observed that 25% preferred rough set extension models while 14% frameworks utilized classical rough set. User's feedback and fuzzy hybridization was used by 10% and 12% frameworks respectively.

S.	Model	Techniques	Strength	Limitations
No.				
1	Machine learning	Probabilistic	Problem of term	Model does not support
	approach to	classification, RSA,	independencies is	degree of relevance in
	information	Adaptive learning	removed in proposed	term weights
	retrieval [35]	algorithm, user's	model	
		relevance feedback		
2	Non-pattern	RSA, equivalence	Rough comparison	few rank levels for
	matching	classes, Rough	between query and web	searched results were
	intelligent IR	relations (equality,		produced, intolerance to

Table 2. Comparative Analysis of Semantic web-Dased monimation Refieval wou
--

-

	method based on	inclusion and	documents for IR where	misclassification of index
	RSA [36]	overlap), relevance	exact match is not found	terms
		feedback		
3	Information	Rough relations,	Inexact match between	Lack of effective method
	retrieval method	hierarchical retrieval	user's query and web	to distinguish between
	based on classical	strategies (trivial	documents (in the	web documents with
	rough set [37]	strategies, direct	absence of exact match)	identical rank level in
		comparison strategies,	based on rough	result set
		upward completion	approximations	
		strategies		
4	Self-adaptive	RSA, users feedback	Customized search	Storage space for
	search engine	information, thesaurus	results based on user's	feedback information
	based on rough	relations	feedback	repository and search
	sets [38]			speed are main challenges
5	Rough set based	Rough set based	Enriched documents	The assumption that all
	manufacturing	classification rules,	representation that	key terms in query are
	process	premise terms, VSM	capture notion of	equally important may not
	document	document-term	'premise terms'	be true in real world
	retrieval [39]	weight		applications
6	Rough set based	User profile learning	Issues related to low	The implicit feedback and
	reasoning and	method, threshold	frequent pattern and	negative feedback were
	sequential pattern	parameter, rough set	computations efficiency	not considered for user's
	mining IF model	decision theory,	were also solved	profile learning
	[40]	probability		
_	~	distribution of objects		
7	Semantic web	Fuzzy formal concept	Proposal that facilitates	Information content
	search based on	analysis, RSA,	the user with maximum	provides useful
	RS and FFCA	Concept Lattice,	flexibility in selecting	information regarding
	[41]	automatic	preferred answer using	search concepts, that may
		construction of	RS1 approximations	be augmented with this
		ontology	and FFCA	approach to make system
Q	Somentia seensh	ECA DST concert	Limitations of ontology	Model works well for
0	method based on	similarity Wikingdia	based IC computation	general domains but
	FCA RST and		approaches were	considered less suitable
	Wikipedia [42]		removed by this	for specialized domains
			approach	tor spectalized domains

International Journal of Psychosocial Rehabilitation, Vol. 24, Issue 08, 2020 ISSN: 1475-7192

-

9	Information	DTRS, hierarchical	Query is formulated on	Lack of systematic
	filtering system	filtering system,	their user's concept	method for automatically
	based DTRS [43]	category level user	space rather than on the	calculating loss function
		profiles, document	space of web resources	from data itself
		level queries		
10	Probabilistic	Probabilistic rough	Total inclusion relation	Lack of systematic
	rough set	set, conditional	required by classical	method to calculate
	approach in IR	probability,	rough set was replaced	threshold parameters (ℓ,
	[44]	equivalence classes,	by partial inclusion	u)
		threshold parameters	relation, thus increasing	
		(ℓ, u)	effectiveness of	
			document ranking	
11	Variable	VPRSM, rough sets	Rough match allowed	The lack of systematic
	precision rough	and fuzzy sets,	with 50% query and	method to calculate
	set model based	conditional	index terms in common	automatically values of
	IR [45]	probability, Cosine	(partial set inclusion)	threshold parameters (l,
		similarity, Rough		u)
		relations		
12	Personalized web	VPRSM, search	Highly personalized	Re-ranking of results may
	retrieval model	engine, user	search results based on	cause performance issue
	based on rough-	preferences, rough	user's preferences	
	fuzzy sets [46]	similarity measures		
13	Vocabulary	Fuzzy sets, rough sets,	Weighted description of	Calculating optimal value
	mining	weighted fuzzy terms,	documents and query,	for threshold parameter γ
	framework for IR	RSA, asymmetric	proposal utilizes term	for different types of
	[47]	similarity measure	relations other than	vocabulary relations is a
		using lower	synonymy	challenging task
		approximations		
14	Client-side	Rough-fuzzy	Proposed technique is	Automatically document
	document	reasoning scheme,	more powerful than	classification using RS
	filtering system	user's feedback,	computing term	may be proposed
	based on rough-	backend search engine	frequency and inverse	
	fuzzy reasoning		document frequency	
	[48]		techniques	
15	Query refinement	Fuzzy RS, lower	Scheme works on query	May have performance
	scheme based on	approximation of	level rather than	issues with thesaurus
	fuzzy RS [49]	upper approximation	individual term in the	consisting of thousands of
		of user	query	links between terms

International Journal of Psychosocial Rehabilitation, Vol. 24, Issue 08, 2020 ISSN: 1475-7192

-

16	User specific IR	Fuzzy RS, Wikipedia,	Problem with creating	This model needs domain
	model using	Discretization, Fuzzy	equivalence classes	ontology to be applied in
	fuzzy RS and	clustering	with WordNet was	specialized domain
	Wikipedia [50]		removed by this	
			approach	
17	IR framework	Tolerance relation,	Calculate semantic	Original work on TRSM
	using tolerance	tolerance class,	relations between user's	based IR model does not
	rough set model	Overlapping classes	query and web	address term weighting
	[51]		documents using upper	that has an important role
			approximations even if	in enriching documents in
			web document does not	text processing
			share common terms	
18	TRSM based	Tolerance rough set	Tackles the problem	Lack of automatically
	search results	based clustering, TF-	related to poor vector	estimating value of
	(snippets)	IDF weighting	representation of	threshold parameter $\boldsymbol{\theta}$ to
	clustering	scheme, k-means	snippets in web search	control word relatedness
	algorithm [52]	algorithm	results clustering	in tolerance class
			algorithms	
19	Web search	Rough tolerance	The coverage of each	Using search results from
	results clustering	relation, normalized	cluster is maximized	one source search engine
	based on TRSM	goggle distance	using search results	seems limitation of this
	[53]	(NGD), cluster	clustering	method, proposal should
		content similarity,		consider full documents
		cluster overlap		rather than snippets for
		techniques		clustering process
20	Architecture of	Ontologies and	Existing search	Management of hierarchy
	semantic IR	Compound Analytics	engine's functionality	of computational tasks in
	system based on	based search, TRSM	enhancement for	response to a compound
	tolerance rough		document search	queries seems one of the
	set [54]			challenges
21	TRSM based	TRSM, automatically	Proposed automatic	Proposed framework
	Semantic text	generates tolerance	tolerance value	should include several
	retrieval for	value and documents	generator algorithm	formats and types of
	Indonesian	are represented with	mechanism for	documents
	corpus [55]	lexicon based method	determination of	
			threshold from a set of	
			documents	

figure 4: (a) Applicability count and (b) Applicability percentage of key features by IR models

VI. CONCLUSION AND RESEARCH DIRECTIONS

IR systems struggle with issues like dealing with imprecise and vague information, lack of standards for knowledge representation and improper utilization of semantic knowledge encoded in webpages etc. This paper presents significant research work on rough set based information retrieval. In particular, the basic concepts of indiscernibility, equivalence classes, approximation space, rough approximations, and rough regions (positive, boundary and negative) were discussed. The paper also provides outline of some extension models of classical rough set including probabilistic rough set model, variable precision rough set model, decision theoretic rough set model, Bayesian rough set model, fuzzy rough set model and tolerance rough set model. These extension models enhanced the capabilities of classical rough set making it suitable for application in various branches of artificial intelligence such feature selection, conflict analysis, expert systems, image processing, information retrieval and data mining to name a few. The purpose of this study is to highlight the limitations of these rough set models and techniques employed for information retrieval. The aim of this survey includes focus on the challenges of rough set based information retrieval and identifications of related issues, those were not addressed in the existing surveys of this topic.

From the perspective of dealing with vagueness and imprecise knowledge rough set theory has emerged as winner. With present survey we are exploring capabilities of rough set in IR. From present survey it is observed that researchers are more inclined towards employing rough set extension models for IR tasks. Also, survey shows trends of using tolerance relations in place of equivalence relation and user's feedback for creating an effective IR system. Application of fuzzy hybridization for including term weights for documents and query is also observed in present survey.

REFERENCES

- Pawlak, Z. (1982). Rough Sets. International Journal of Computer and Information Science, 11(5), 341-356.
- Pawlak, Z. (1991). Rough Sets: Theoretical Aspects of Reasoning about Data. System Theory, Knowledge Engineering and Problem Solving, vol. 9, Kluwer Academic Publisher, Dordrecht.
- 3. Pawlak, Z., Skowron, A. (2007). Rudiments of rough sets. Information Sciences, 177, 3–27.
- Chen, Y. S., Cheng, C. H.(2010). Forecasting PGR of the Financial Industry Using a Rough Sets Classifier Based on Attribute-Granularity. Knowledge and Information Systems, 25(1), 57-79.
- Deogun, J. S., Raghavan, V. V., Sarkar, A., Sever, H. (1997). Data mining: trends in research and development. In: T.Y. Lin and Cercone, N. (Eds.) Rough Sets and Data Mining, Kluwer Academic Publishers, Boston, 9-45.
- 6. Qiu, G. F., Zhang, W. X., Wu, W. Z. (2005). Characterizations of attributes in generalized approximation representation spaces, LNAI, 3641, 84-93.
- Li, Y., Zhang, C., Swan, J. R. (1999). Rough set-based model in information retrieval and filtering. In: Proceeding of the 5th International Conference on Information Systems Analysis and Synthesis, 398-403.
- Srinivasan, P., Ruiz, M. E., Kraft, D. H., Chen, J. (2001). Vocabulary mining for information retrieval: rough sets and fuzzy sets, Information Processing and Management, 37, 15-38.
- 9. Yao, J. T., Zhang, M. (2005). Feature selection with adjustable criteria, LNAI, 3641, 204-213.
- Yao, J. T., Herbert, J. P. (2007). Web-based Support Systems based on Rough Set Analysis. In: Kryszkiewicz M., Peters J. F., Rybinski H., Skowron A. (eds) Rough Sets and Intelligent Systems Paradigm, LNCS, 4585, 360-370.
- 11. Miyamoto, S. (1998). Application of rough sets to information retrieval. Journal of the American Society for Information Science, 49(3), 195-205.
- 12. Hua, J. (2009). Study on Information Retrieval Model Based on Rough Set Theory. International Symposium on Intelligent Ubiquitous Computing and Education, IEEE, 440-444.
- Ahmed, M. W., Ansari, M. A. (2012). A Survey: Soft computing in Intelligent Information Retrieval Systems. International Conference on Computational Science and Its Applications, IEEE, 26-34.
- Zhou, B. (2013). Applying rough set theory to information retrieval. 26th IEEE Canadian Conference on Electrical and Computer Engineering (CCECE). doi: <u>https://doi.org/10.1109/ccece.2013.6567836</u>
- 15. Zhang, Q., Xie, Q., Wang, G. (2016). A survey on rough set theory and its applications. CAAI Transactions on Intelligence Technology, 1, 323-333.
- 16. Pawlak, Z., Skowron, A. (2007). Rough sets: Some extensions. Information Sciences, 177, 28-40.
- 17. Yao, Y. Y. (2003). Probabilistic approaches to rough sets, Expert Systems, 20, 287-297.

- Ziarko, W. (2008). Probabilistic approach to rough sets, International Journal of Approximate Reasoning, 49, 272–284.
- Yao, Y.Y., Wong, S. K. M. (1992). A decision theoretic framework for approximating concepts. International Journal of Man–machine Studies, 37, 793–809.
- Yao, Y.Y. (2003). Information granulation and approximation in a decision-theoretical model of rough sets. In: Pal, S. K., Polkowski, L., Skowron, A. (Eds.), Rough-neural Computing: Techniques for Computing with Words, Springer, Berlin, 491–518.
- Yao, Y. Y., Wong, S. K. M., Lingras, P. (1990). A decision-theoretic rough set model. In: Ras, Z.W., Zemankova, M., Emrich, M.L. (Eds.) Methodologies for Intelligent Systems, 5, 17–24.
- Ziarko, W. (1993). Variable precision rough set model, Journal of Computer and System Science, 46, 39– 59.
- Katzberg, J. D., Ziarko, W. (1994). Variable precision rough sets with asymmetric bounds. In: Ziarko, W. (Ed.) Rough Sets, Fuzzy Sets and Knowledge Discovery, Springer, London, 167–177.
- Katzberg, J. D., Ziarko, W. (1996). Variable Precision Extension of Rough Sets. Fundamenta Informaticae, 27(2-3), 155-168.
- 25. Slezak, D., Ziarko, W. (2002). Bayesian rough set model. In: Proceeding of international workshop on foundation of data mining (FDM'2002), Japan, 131–135.
- Slezak, D. (2005). Rough sets and Bayes factor. In: Peter J. F., Skowron, A. (eds) Transactions on Rough Sets III, LNCS, 3400, 202–229.
- Slezak, D., Ziarko, W. (2005). The investigation of the Bayesian rough set model. International Journal of Approximate Reasoning, 40(1-2), 81–91.
- Skowron, A., Stepaniuk, J. (1996). Tolerance approximation spaces. Fundamenta Informaticae, 27, 245– 253.
- Dubois, D., Prade, H. (1992). Putting Rough Sets and Fuzzy Sets Together. Intelligent Decision Support: Handbook of Applications and Advances of the Rough Set Theory, Kluwer Academic Publishers, Dordrecht, 203–232.
- Yao, Y.Y. (1997). Combination of Rough and Fuzzy Sets Based on α-Level Sets. In Rough Sets and Data Mining: Analysis of Imprecise Data, T. Y. Lin, N. Cereone (eds.), Kluwer Academic Publishers, 301–321.
- Pawlak, Z., Skowron, A. (1994). Rough Membership Functions. In Advances in the Dempster-Shafer Theory of Evidence, R. Yager, M. Fedrizzi, J. Kacprzyk (eds.), Wiley, New York, 251–271.
- 32. Yao, Y. Y., Zhou, B. (2010). Naive Bayesian rough sets. In: Rough Set and Knowledge Technology-International Conference, RSKT 2010, Beijing, China, 719-726.
- Yeung, D. S., Chen, D. G., Tsang, E. C. C., Lee, J. W. T., Wang, X. Z. (2005). On the Generalization of Fuzzy Rough Sets. IEEE Transactions on Fuzzy Systems, 13(3), 343–361.
- Wu, W. Z., Zhang, W. X. (2004). Constructive and Axiomatic Approaches of Fuzzy Approximation Operators. Information Sciences, 159(3-4), 233–254.
- Wong, S. K. M., Ziarko, W. (1986). A machine learning approach to information retrieval. In: Proceeding of ACM SIGIR conference, Italy, 228–233.
- Srinivasan, P. (1989). Intelligent information retrieval using rough sets approximations. Information Processing & Management, 25(4), 347–361.

- Green, J., Horne, N., Ortowska, E., Siemens, P. (1996). A rough set model of information retrieval. Fundamenta Informaticae, 28(3-4), 273-296.
- Xu, B., Zhang, W., Yang, H., Chu, W.C. (2001). A rough set based self-adaptive web search engine, in: International Computer Software and Applications Conference (COMPSAC), 377–382.
- Huang, C. C., Tseng, T. L., Chuang, H. F., Liang, H. F. (2006). Rough-set-based approach to manufacturing process document retrieval. International Journal of Production Research, 44(14), 2889–2911.
- 40. Zhou, X. (2008). Rough Set-based Reasoning and Pattern Mining for Information Filtering (Doctoral Dissertation). Queensland University of Technology, Brisbane, Australia.
- 41. Formica, A. (2012). Semantic web search based on rough sets and fuzzy formal concept analysis. Knowledge-Based Systems, 26, 40-47.
- 42. Jiang, Y., Yang, M. (2018). Semantic Search Exploiting Formal Concept Analysis, Rough Sets, and Wikipedia. International Journal on Semantic Web and Information Systems, 14(3), 99-109.
- Li, Y., Zhang, C., Swan, J. R. (2000). An information filtering model on the web and its applications in JobAgent. Knowledge-Based Systems, 13, 285–296.
- 44. Ziarko, W., Fei, X. (2002). VPRSM approach to WEB searching. In: Proceedings of third International conference on rough sets and current trends in computing, RSCTC'02, LNCS, 2475, 514–521.
- He, M., Feng, B. (2005). Intelligent information retrieval based on variable precision rough set model and fuzzy sets. In: Rough sets, fuzzy sets, data mining, and granular computing. RSFDGrC, LNCS, 3642, 184-192.
- Duan, Q., Miao, D., Zhang, H., Zheng, J. (2007). Personalized Web Retrieval based on Rough-Fuzzy Method. Journal of Computational Information Systems, 3(2), 203-208.
- 47. Srinivasan, P., Ruiz, M. E., Kraft, D. H., Chen, J., Kundu, S. (2001). Vocabulary mining for information retrieval: rough sets and fuzzy sets. Information Processing and Management, 37(1), 15-38.
- Singh, S., Dey, L. (2003). A rough–fuzzy document grading system for customized text information retrieval. Information Processing and Management, 25(4), 347–361.
- 49. De Cock, M., Cornelis, C. (2005). Fuzzy rough set-based web query expansion. In: Proceedings of rough sets and soft computing in intelligent agent and web technology. International workshop at WIIAT, 9-16.
- 50. Yadav, N., Chatterjee, N. (2018). Fuzzy rough set based technique for user specific information retrieval: a case study on Wikipedia data. International Journal of Rough sets and Data Analysis, 5(4), 1-16.
- Ho, T. B., Funakoshi, K. (1990). Information retrieval using rough sets. Journal of Japanese Society for AI, 23(102), 424-433.
- 52. Ngo, C. L., Nguyen, H. S. (2005). A method of web search result clustering based on rough sets. In: International Conference on Web Intelligence (WI'05), 673–679.
- 53. Meng, X., Chen, Q. C., Wong, L. (2009). A tolerance rough set based semantic clustering method for web search results. Information Technology Journal, 8(4), 453-464.
- Nguyen, H. S. (2013). Tolerance Rough Set Model and its Applications in Web Intelligence. In: International Conferences on Web Intelligence (WI) and Intelligent Agent Technology (IAT), IEEE, 237-244.
- Virginia, G., Nguyen, H. S. (2015). A Semantic Text Retrieval for Indonesian Using Tolerance Rough Sets Models. In: Peters J., Skowron, A., Slezak, D., Nguyen, H., Bazan, J. (Eds.): Transactions on Rough Sets XIX, LNCS, 8988, 138–224.