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ABSTRACT--The article considers oscillations of a dissipative mechanical system with a finite number of 

degrees of freedom when exposed to group vibration loads. As an example, a dissipative mechanical system with 

two degrees of freedom is considered. The considered bodies are mounted on viscoelastic supports whose rigidity 

is described by the integral Boltzmann – Walter relations.The resulting integro-differential equations are solved by 

the method of complex amplitudes of the theory of oscillations (or analytically).Investigated before the resonance, 

resonance and after resonance regions of the mechanical system under consideration. Found by the condition in 

the form of inequality when self-synchronization occurs. With sufficient maximum possible values of the vibrational 

moments, self-synchronization can take place even in the case when the partial angular velocities differ significantly 

from one another. Knowing the distribution law of a random variable, we can calculate the probability of inequality, 

that is, the probability of the presence of self-synchronization. It has been established that for sufficient maximum 

possible values of the vibrational moments, self-synchronization can take place even in the case when the partial 

angular velocities differ significantly from one another. It was also determined that the amplitude of the basement 

oscillations decreases by a factor of five compared with the amplitude of oscillations in the absence of self-

synchronization. Thus, the mathematical formulation and methods for solving the problem of dynamic stability of 

a viscoelastic mechanical system with a finite number of degrees of freedom are developed. Comparison of 

calculated values with known results. Taking into account the viscous properties of the material has a noticeable effect 

on the areas of dynamic stability. Viscous properties play a stabilizing factor for parametric oscillations of mechanical 

systems. Geometrically, the sizes of the regions of dynamic instability corresponding to the main parametric resonances 

are reduced and shifted above the abscissa axis. 

Keywords-- vibrations, vibration load, angular velocities, resonance, group foundations, mode stability. 

 

I. INTRODUCTION 

Under certain conditions, the shifts are such that the imbalances caused by the operation of 

individual machines are mutually compensated. It is this case that is considered below. This idea of 

using the phenomenon of self-synchronization in the design of group foundations for unbalanced 

machines was proposed in [1,2,3]. For the practical use of this principle, the following two conditions 

must be met: 
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1.There must exist and be stable a regime of synchronous rotation of the shafts of machines with 

such a combination of phases, in which the imbalances of the machines are mutually compensated, 

and the machines are considered exactly the same, that is, the scatter of  their parameters is not taken 

into account due to inaccuracies in the manufacture and assembly of parts of the vibrators and their 

engines. 

2.This mode of synchronous movement of machines must be stable, that is, insensitive to the 

deviations of machine parameters from their nominal values that are always available in practice, 

which may involve a mismatch in synchronous movement.  

The stability of the synchronous mode is ensured by a sufficiently strong vibrational coupling 

between the machines, that is, the vibrational interaction of the machines through the foundation 

compensates for the harmful effect of the variation in the parameters of the machines.  

The problem of damping foundation vibrations for two machines that develop unbalanced forces of 

constant direction (for example, compressors) is described in [4]. In solving this problem, it was 

assumed that the foundation не oscillations are not interconnected in x and φ coordinates [5,6,7]. 

This article summarizes the results of solving this problem for a more complex and practically 

more realistic case, taking into account the relationship of horizontal and rotational vibrations of the 

foundation installed on viscoelastic supports [8,9,10]. 

 

II. PROBLEM STATEMENT AND SOLUTION METHODS 

Let two identical machines with progressively moving unbalanced masses according to a harmonic 

law be mounted on a common foundation, which rests on an elastic foundation and can  perform plane 

motion (Fig. 1). The action lines of unbalanced forces do not pass through the center of gravity of the 

foundation with O1 machines. Machines are driven by an asynchronous motor, so that the vibrations 

of unbalanced masses can be shifted in phase. Differential equations of small vibrations of the 

foundation under the action of unbalanced forces developed by machines have the form  
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On the stiff nesses of massless elements. 

 

 

Figure 1: Design scheme 

 

Hereхandу - coordinates of the center of gravity О1 foundation with machines in a fixed coordinate 

systemхОу,coinciding in the position of static equilibrium with the axis systemuО1v, rigidly connected 

to the foundation; φ is the angle of rotation of the foundation, measured along the clock; МandI - 

accordingly, the mass and central moment of inertia of the foundation with the machines; xс
~ and yс

~
 - 

operator coefficients characterizing the rigidity of the base; 1
~~ hсс xx  -operator coefficient 

characterizing the relationship of oscillations in coordinates x a n d  , 1h  - distance from the bottom 

edge of the foundation to the center of gravity O1 .   

Solution of a system of integro-differential equations (1) corresponding to forced frequency 

oscillations  , has the form 
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Where 00 ,, YA  - the amplitude is mixed (complex value), IR i  .It is assumed that the 

movement of the system occurs far from resonances, that is, the frequencies of the forced vibrations of the 
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body are sufficiently different from the frequencies of the main vibrations.Substituting (2) into (1), then we 

obtain the following expression of the displacement amplitude 
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Y0 =0. 

H e r e A 1 a n d A 2 - the amplitude of the displacement of external vibrational loads, а 1 and 2

relative phase shift of the disturbing forces of the vibrators; h - distance from the center of gravity of 

the foundation O1 to the line of action of the disturbing forces of the vibrators. After simple 

transformations of body movements under the influence of external loads (2) and (3) takes the following form: 
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To establish the nature of stable synchronous movements of machines, the so-called integral 

criterion for the stability of synchronous movements, proposed in [11, 12], is used. According to this 

criterion, a stable synchronous movement of the same or almost the same vibrators corresponds to 

such a combination of the rotation phases of the machine shafts, for which the average value of the 
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Lagrange function corresponding to the bodies over the period which machines are installed , has a 

minimum [13] 
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If we use (4) and (5) we obtain the following expression of the Lagrange function  
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Here  average for the period  /2 the value of the Lagrange function TL  (Т - kinetic,  

П-potential energy); 
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When the condition is met 
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Function  at the point   has a minimum, and at the point 0 - the maximum, that is, in 

accordance with the integral criterion, the antiphase motion is stable, and the in-phase motion is 

unstable [14,15,16]. 

 

III. RESULTS OF CALCULATIONS AND DISCUSSION 

In the calculations, the three-parameter Rizhanitsen – Koltunov core was used as the relaxation 

core  

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
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. Here ,,A - parameters of the relaxation core [17], which takes the following value 

1,0;05,0;048,0  A .As follows from Fig. 2, and also from equality (2), with the 

antiphase motion of the vibrators (   ), there are no base vibrations. 

Thus, the fulfillment of inequality (4) is a condition for the presence of a favorable situation when 

the machines exhibit a tendency toward mutual balancing.On drawing. 3, 4, 5 areas of stability and 

instability of antiphase motion are depicted for various parameter values
2 and  . Areas of stability 

are shaded.For comparison on drawing.2 the same areas are shown for various parameter values
2

when (see above), when horizontal and rotational vibrations are not interconnected, that is, the 



International Journal of Psychosocial Rehabilitation, Vol. 24, Issue 08, 2020 

ISSN: 1475-7192 

Received: 27 Feb 2019 | Revised: 20 Mar 2019 | Accepted: 30 Apr 2020                          5724  

coefficient xс
~ taken equal to zero.The areas of stability are shown in the figure. 2 by shading the 

boundaries within the stability regions.As follows from picture. 2, at 12 x and 12 x , that is, when 

the frequencies of natural vibrations of the foundation are less than the frequencies of forced vibrations 

(in the after resonance region), the antiphase motion is always stable.Thu s, the case of “soft” setting 

of machines always leads to a favorable situation.At 12 x and 12 x (in the pre-resonance region) 

the antiphase motion of the vibrators is unstable [18,19,20]. 

In the case under consideration, the stability regions are substantially changed, but the main 

regularity of the previous case is preserved here.  

  On the picture. 3, 4, 5 dashed lines plot the resonance curves, where the frequency of the forced 

oscillations coincides with one of the frequencies of the main oscillations. The resonance curves 

coincide with the boundaries of the regions of stability and instability, which is also characteristic of 

the previous case.  

 

 

Figure 2: The real parts of the frequency of the natural vibrations of the foundation are less than the 

frequencies of the forced vibrations (in the after resonance region) ( 12 x and 12 x ). 

 

In the resonance region, indicated byI , as before, the ant phase motion is unstable, and in the after 

resonance region, indicated by a number  II, antiphase motion is stable, that is, the “soft” setting of 

machines still leads to mutual balancing of their dynamic effects.  
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Figure 3:  The frequency of the forced vibrations matches the real parts with one of the frequencies 

of the main vibrations. 

Due to inaccuracies in manufacturing and assembly, partial speeds of machines 1 and 2 may 

differ from one another. Stable stationary values of phase shifts in this case will differ from , so 

that the effects of machine imbalances are not completely, but only partially mutually compensated 

[21,22]. 

The new values of the phase shifts are determined from equation [23] 
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Figure 4: The frequency of the forced vibrations matches the real parts with one of the 

frequencies of the main vibrations 
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Figure 5 : The frequency of the forced vibrations matches the real parts with one of the 

frequencies of the main vibrations 

 

Wo- the maximum possible value of vibration moments Ws, reflecting the inverse effect of 

foundation vibrations on the movement of the rotors of the vibrators. The presence of vibrational 

moment’s leads to equalization of the angular velocities of the machines;zLandzRconstants determined 

by the catalog data of engines.It was shown in [24] that the relations 
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When inequality 
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q
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уравнение (5) имеетвещественныерешенияотносительно equation (5) has real solutions with 

respect to  . 

Thus, the fulfillment of inequality (8) is a condition for the onset of self -synchronization. With 

sufficient maximum possible values of the vibrational moments, self -synchronization can take place 

even in the case when the partial angular velocities differ significantly from one another. 

Knowing the law of distribution of a random variable q , we can calculate the probability of 

inequality (8), i.e., the probability of the presence of self-synchronization. It is natural to assume that 
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the quantity q distributed according to normal law with an average value of zero. Standard deviation

 , in view of the lack of accurate data, one can take equal to a third of the maximum possible 

deviation of the partial velocities.  

max

1

3
q   (9) 

Magnitude
maxq usually not difficult to evaluate in each case [25]. Under the assumptions made, the 

probability of fulfilling the self-synchronization condition will be 
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Figure 6: Dependencies P from /1 at various   
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. 

FunctionCharts )6(  P are presented in fig. 6 dashed lines. 
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where )(x -Gaussian probability integral; Amax -maximum amplitude of foundation vibrations in 

the presence of self-synchronization; А*-maximum amplitude of foundation vibrations in the absence 

of self-synchronization;  -set share from А*. 

From their consideration, in particular, it follows that for 2/1/1  , i.e., when 2

probability of not exceeding Амахthe values 0,2А*is 0.9, in other words, the amplitude of the foundation 

vibrations decreases by five times compared with the amplitude of oscillations in the presence of self-

synchronization. 

 

IV. CONCLUSIONS 

1.A mathematical formulation and methods for solving the problem of dynamic stability of a viscoelastic 

mechanical system with a finite number of degrees of freedom have been developed. Comparison of numerical 

values of calculations with known results.                                                                                                                            

2.Taking into account the viscous properties of the material has a noticeable effect on the areas of dynamic 

stability. Viscous properties play a stabilizing factor for parametric vibrations of mechanical systems. 

Geometrically, the sizes of the regions of dynamic instability corresponding to the main parametric resonances are 

reduced and shifted above the abscissa axis. 
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