A STUDY ON SOME CLASSES OF TOPOGENIC GRAPH

¹M. Anitha

ABSTRACT-- We give the definition of topogenic graph, some classes of topogenic graph and also we propose two open problems.

KEYWORDS— a study on some classes of topogenic graph

Definition 1

We identify the initial vertex of P_n and the central vertex of $K_{1,m}$. The resulting graph is denoted by $P_n \odot K_{1,m}$.

Theorem 2

 $P_3 \odot K_{1,m}$ is topogenic for every positive integer *m*.

Proof

Let $V(K_{1,m}) = \{u_1, v_1, v_2, \dots, v_m\}$ and $V(P_3) = \{u_1, u_2, u_3\}.$ Then $V(P_3 \odot K_{1,m}) = V(P_3) \cup V(K_{1,m}).$ Choose $X = \{1, 2, \dots, m+2\}$ as the ground set. Let $f: V(P_3 \odot K_{1,m}) \rightarrow 2^X$ be defined by

 $f(v_i) = \{1, 2, \dots i + 2\}, 1 \le i \le m,$

 $f(u_1) = \emptyset, f(u_2) = \{1\}, f(u_3) = \{1,2\}.$ Then, both f and f^{\oplus} are injective.

Therefore, $f(V) \cup f^{\oplus}(E)$ forms a topology on *X*.

Hence $P_3 \odot K_{1,m}$ is topogenic for every positive integer *m*.

Theorem 3

 $P_4 \odot K_{1,m}$ is topogenic for every positive integer *m*.

Proof Let $V(K_{1,m}) = \{u_1, v_1, v_2, \dots, v_m\}$ and $V(P_4) = \{u_1, u_2, u_3, u_4\}.$ Then $V(P_4 \odot K_{1,m}) = V(P_4) \cup V(K_{1,m}).$ Without loss of generality, choose $X = \{1, 2, \dots, m+3\}$ as the ground set.

Let $f: V(P_4 \odot K_{1,m}) \to 2^X$ be defined by

¹ Department of Mathematics, Kalasalingam Academy of Research and Education, India, anivic1992@gmail.com

 $f(v_i) = \{1, 2, \dots i + 3\}, 1 \le i \le m,$ $f(u_1) = \emptyset, f(u_2) = \{1\}, f(u_3) = \{2\}, f(u_4) = \{1, 2, 3\}.$ Then, both f and f^{\oplus} are injective. Moreover, $f(v_1) \subset f(v_2) \subset \dots \subset f(v_m)$ and $f(u_2) \subset f(u_4) \text{ and } f(u_3) \subset f(u_4);$ $f(v_i) \cap f(u_1) = \emptyset \in f(V), 1 \le i \le m;$ $f(v_i) \cup f(u_1) = f(v_i) \in f(V), 1 \le i \le m;$ $f^{\oplus}(u_1u_2) = \{1\} \in f(V), f^{\oplus}(u_2u_3) = \{1, 2\} \in f^{\oplus}(E)$ and $f^{\oplus}(u_3u_4) = \{1, 3\} \in f^{\oplus}(E).$ Therefore, $f(V) \cup f^{\oplus}(E)$ forms a topology on X. Hence $P_4 \odot K_{1,m}$ is topogenic for every positive integer m.

Theorem 4

 $P_5 \odot K_{1,m}$ is topogenic for every positive integer *m*.

Proof

Let $V(K_{1,m}) = \{u_1, v_1, v_2, ..., v_m\}$ and $V(P_4) = \{u_1, u_2, u_3, u_4, u_5\}.$ Then $V(P_5 \odot K_{1,m}) = V(P_5) \cup V(K_{1,m}).$ Without loss of generality, choose $X = \{1, 2, ..., m + 3\}$ as the ground set.

Let $f: V(P_5 \odot K_{1,m}) \to 2^X$ be defined by $f(v_i) = \{1, 2, ..., i+3\}, 1 \le i \le m,$ $f(u_1) = \emptyset, f(u_2) = \{1\}, f(u_3) = \{2\}, f(u_4) = \{1,3\},$ $f(u_4) = \{1,2,3\}.$ Then, both f and f^{\oplus} are injective. $f(v_i) \cap f(u_1) = \emptyset \in f(V), 1 \le i \le m;$ $f^{\oplus}(u_1u_2) = \{1\} \in f(V), f^{\oplus}(u_2u_3) = \{1,2\} \in f^{\oplus}(E),$ $f^{\oplus}(u_3u_4) = \{1,2,3\} \in f(V)$ and $f^{\oplus}(u_4u_5) = \{2\} \in f(V).$ Therefore, $f(V) \cup f^{\oplus}(E)$ forms a topology on X. Hence $P_5 \odot K_{1,m}$ is topogenic for every positive integer m.

Corollary 5

Similarly, we can prove $P_n \odot K_{1,m}$, for n = 6,7,8,9,10,11,12,13,14 is topogenic from the argument of P_n , for n = 6,7,8,9,10,11,12,13,14 is topogenic. Hence $P_n \odot K_{1,m}$, for n = 6,7,8,9,10,11,12, 13,14 is topogenic.

Problem 6

Is $P_n \odot K_{1,m}$ is topogenic for every positive integers *m* and $n \ge 15$.

Definition 7

We identify the central vertex of $K_{1,p}$ and the central vertex of $K_{1,m,n}$. The resulting graph is denoted by $K_{1,p} \odot K_{1,m,n}$.

Theorem 8

 $K_{1,p} \odot K_{1,m,n}$ is topogenic for every positive integer *m*, *n* and *p*.

Proof

Let $V(K_{1,p}) = \{u_0, u_1, u_2, \dots, u_p\}$ and $V(K_{1,m,n}) = \{u_0, v_1, v_2, \dots, v_m, w_1, w_2, \dots, w_n\}.$ Then $V((K_{1,p}) \odot (K_{1,m,n})) = V(K_{1,p}) \odot V(K_{1,m,n})$ Without loss of generality, choose $X = \{1, 2, \dots, m + n + p\}$ as the ground set. Let $f: V(K_{1,p} \odot K_{1,m,n}) \rightarrow 2^X$ be defined by $f(u_i) = \{1, 2, \dots, i\}, m + n + 1 \le i \le p, f(u_0) = \emptyset.$ Also, $f(v_i) = \{1, 2, \dots, i\}, 1 \le i \le m;$ $f(w_j) = \{1, 2, \dots, m + j\}, 1 \le j \le n.$ Let f^{\oplus} be the induced edge function. Then both f and f^{\oplus} are injective.

Therefore, $f(V) \cup f^{\oplus}(E)$ forms a topology on *X*.

Hence $K_{1,p} \odot K_{1,m,n}$ is topogenic for every positive integer *m*, *n* and *p*.

Example 9

If the topogenic graph G is connected, then the corresponding topology is either connected or not connected. For,

Figure 1.1

 $\tau = \{\emptyset, \{1\}, \{1,2\}, \{1,2,3\}\}.$

Therefore, (X, τ) is connected.

Then, the next example shows that if the graph is connected, then the topology is not necessarily connected.

 $\tau = \{\emptyset, \{1\}, \{2\}, \{1,2\}, \{1,3\}, \{1,2,3\}\}.$ Therefore, (X, τ) is not connected.

Example 10

If the topogenic graph G is disconnected, then the topology is either connected or not connected. For,

Figure 1.3

 $\tau = \{ \emptyset, \{1\}, \{2\}, \{1,2\}, \{1,2,3\} \}.$

Therefore, (X, τ) is connected.

Then, the next example show that if the graph is disconnected, then the topology is not connected.

Figure 1.4

 $\tau = \{\emptyset, \{1\}, \{2\}, \{1,2\}, \{1,2\}\}.$

Therefore, (X, τ) is not connected.

Remark 11

From the above examples we conclude that the graph C_3 and C_4 are topogenic.

Proposition 12

 C_5 is not topogenic.

Proof

If possible, let C_5 be topogenic, which implies there exists a topogenic set-indexer f of C_5 with respect to some non-empty ground set, say X, so that

 $\tau_f = f(V(C_5)) \cup f^{\oplus}(E(C_5))$ is a topology on *X*.

Then by Theorem 3.11, for a topogenic cycle C_n ,

$$n+1 \le \rho^0 \le 2n-2.$$

For C_5 , $6 \le \rho^0 \le 8$.

Since f is injective, the empty set, \emptyset cannot be obtained as a symmetric difference of two non-empty sets.

Hence, empty set, \emptyset should necessarily be assigned to a vertex.

That is, $\emptyset \in f(V(C_5))$.

Hence, let $f(V(C_5)) = \{\emptyset, V_1, V_2, V_3, V_4\}$, where V_1, V_2, V_3, V_4 are non-empty subsets of X.

Then, $f^{\oplus}(E(\mathcal{C}_5)) = \{V_1 \oplus \emptyset, V_1 \oplus V_2, V_2 \oplus V_3, V_3 \oplus V_4, V_4 \oplus V_5\}.$

Since τ_f is a topology on *X*, the entire set *X* must be an element of τ_f .

There arise two cases namely, $X = V_i$ for some $i \in \{1, 2, 3, 4\}$, or $X = V_i \oplus V_i$ for some distinct $i, j \in \{1, 2, 3, 4\}$.

Case (i): $X = V_i$ for some *i*.

Step 1

Without loss of generality, let $X = V_4$.

Then V_1, V_2, V_3 can be such that $V_1 \cup V_2 \cup V_3 = V_4$ or

 $V_1 \cup V_2 \cup V_3 \subset V_4.$

Let $V_1 \cup V_2 \cup V_3 = V_4$.

If the sets, V_1 , V_2 , V_3 are pairwise disjoint, then

 $V_1 \oplus V_2 = (V_1 \cup V_2) \setminus (V_1 \cap V_2) = V_1 \cup V_2$ and

$$V_4 \oplus V_3 = (V_4 \cup V_3) \setminus (V_4 \cap V_3)$$

 $= V_4 \setminus V_3$ = $X \setminus V_3$ = $V_1 \cup V_2$, a contradiction to the injectivity of f^{\oplus} .

Therefore, at least two of the sets V_1 , V_2 , V_3 must have a common element.

Without loss of generality, suppose $V_1 \cap V_2 = A \neq \emptyset$.

Since τ_f is a topology on *X*, we have *A* must be in τ_f .

Therefore, $A = V_i$ for some $i \in \{1,2,3\}$ or $A = V_i \oplus V_j$ for some distinct $i, j \in \{1,2,3\}$, for neither $A = V_4 = X$ nor $A = V_4 \oplus \emptyset.$ So let $A = V_3$. Then $V_1 \cup V_2 \cup V_3 = V_1 \cup V_2 \cup A = V_1 \cup V_2 = V_4$. Then $V_1 \oplus V_2 = (V_1 \cup V_2) \setminus (V_1 \cap V_2) = V_4 \setminus A = V_1 \cup V_2$. $V_3 \oplus V_4 = (V_3 \cup V_4) \setminus (V_3 \cap V_4) = V_4 \setminus V_3 = X \setminus A$ $= V_1 \cup V_2.$ Which is a contradiction to the injectivity of f^{\oplus} . Therefore, $A = V_1$ or $A = V_2$. Let $A = V_1$. Then $V_1 \cup V_2 = V_2$. Now, $V_2 \cap V_3 \neq \emptyset$. Since otherwise, if $V_2 \cap V_3 = \emptyset$, then $V_1 \cup V_2 \cup V_3 = V_2 \cup V_3$ and

by assumption $V_2 \cup V_3 = V_4$.

Then, $V_2 \oplus V_3 = (V_2 \cup V_3) \setminus (V_2 \cap V_3) = V_2 \cup V_3 = V_4$

But $V_4 \oplus \emptyset = V_4$, a contradiction to injectivity of f^{\oplus} .

Therefore, $V_2 \cap V_3 \neq \emptyset$.

-- - --

Also,
$$V_1 \oplus V_2 = (V_1 \cup V_2) \setminus (V_1 \cap V_2) = V_2 \setminus V_1$$

and $V_3 \oplus V_4 = (V_3 \cup V_4) \setminus (V_3 \cap V_4) = V_4 \setminus V_3$
 $= (V_1 \cup V_2 \cup V_3) \setminus V_3$
 $= (V_1 \setminus V_3) \cup (V_2 \setminus V_3) \cup (V_3 \setminus V_3)$
 $= (V_1 \setminus V_3) \cup (V_2 \setminus V_3)$
 $= (V_1 \setminus V_2) \setminus V_3$
 $= V_2 \setminus V_3$

But by the choices of V_1, V_2, V_3, V_4 we have a contradiction to the injectivity of f^{\oplus} . Hence $A \neq V_1$.

Analogously, we can show that $A \neq V_2$. That is, $A \neq V_i$, for all $i \in \{1, 2, 3, 4\}$.

Step 2

Hence *A* being an element of τ_f , $A = V_i \oplus V_j$ for some $i, j \in \{1, 2, 3, 4\}$. But $V_1 \oplus V_2 = (V_1 \cup V_2) \setminus (V_1 \cap V_2) = (V_1 \cup V_2) \setminus A$. $V_2 \oplus V_3 = (V_2 \cup V_3) \setminus (V_2 \cap V_3).$

 $V_3 \oplus V_4 = (V_3 \cup V_4) \setminus (V_3 \cap V_4) = V_4 \setminus V_3 = (V_1 \cup V_2) \setminus V_3$

and hence none of the sets $V_i \oplus V_i$ for distinct

 $i, j \in \{1, 2, 3, 4\}$ equals A.

Hence $A = V_1 \cap V_2 \notin \tau_f$, again a contradiction to the fact that τ_f is a topology on X.

The above analysis implies that $V_1 \cup V_2 \cup V_3 \neq X$.

Then $V_1 \cup V_2 \cup V_3 \subset V_4 = X$.

Let $V_1 \cup V_2 \cup V_3 = B$.

Since τ_f being a topology, *B* must be in τ_f .

Clearly $B \not\subseteq V_i$ and $B \neq V_i$ for any $i \in \{1,2,3,4\}$, and not a subset of the union of any pair of them.

Hence $B = V_i \bigoplus V_i$ for some distinct $i, j \in \{1, 2, 3, 4\}$.

Without loss of generality, let $B = V_1 \oplus V_2$.

Then $V_1 \cup V_2 \cup V_3 = B = V_1 \oplus V_2$.

Then V_1, V_2 can be such that $V_1 \cup V_2 \subset B$ or $V_1 \cup V_2 = B$

Suppose $V_1 \cup V_2 \subset B$.

Then $V_1 \cap V_2 = \emptyset$ which implies

$$V_1 \oplus V_2 = (V_1 \cup V_2) \setminus (V_1 \cap V_2) = (V_1 \cup V_2) \subset B$$

and

 $V_1 \oplus V_2 = (V_1 \cup V_2) \setminus (V_1 \cap V_2) \subset B \setminus (V_1 \cup V_2) \subset B.$

Suppose, $V_1 \cup V_2 = B$.

Then $V_1 \cap V_2 \neq \emptyset$ which implies

 $V_1 \oplus V_2 = (V_1 \cup V_2) \setminus (V_1 \cap V_2) = B \setminus (V_1 \cup V_2) \subset B \text{ and } V_1 \cap V_2 \neq \emptyset \text{ which implies suppose } V_1 \text{ and } V_3 \text{ are disjoint sets, then } V_1 \in \tau_f \text{ and } V_3 \in \tau_f.$

Since τ_f is a topology, $V_1 \cup V_3 \in \tau_f$.

By our choices of V_1, V_2, V_3 and V_4 and from the expressions for $V_i \oplus V_j$ for distinct $i, j \in \{1, 2, 3, 4\}$, it is clear that $V_1 \cup V_3 \notin \tau_f$, this leads to a contradiction.

Therefore, V_1 and V_3 must have a common element.

Therefore, there exists *D* such that $D = V_1 \cap V_3$ and $D \neq \emptyset$.

Which implies $D = V_1 \cap V_3 \subset B$

Which implies $D \in \tau_f$.

By our choices of V_1, V_2, V_3 and V_4 can be such that $V_4 \neq D$.

Therefore, $D = V_1$ or $D = V_2$ or $= V_3$.

Suppose $D \subseteq V_2$.

 $D \subseteq V_1 \cap V_2.$

Which is a contradiction.

Therefore, $D = V_1$ or $D = V_2$.

Suppose $D = V_3$.

Then $V_1 \cap V_3 = V_3$.

Then $V_1 \oplus V_2 = (V_1 \cup V_2) \setminus (V_1 \cap V_2) = V_1 \cup V_2 \in \tau_f$.

$$V_3 \oplus V_4 = (V_3 \cup V_4) \setminus (V_3 \cap V_4) = V_4 \setminus V_3 \in \tau_f.$$

Since $V_1 \oplus V_2$, $V_3 \oplus V_4 \in f^{\oplus}(E(\mathcal{C}_5)) \in \tau_f$.

But by choices of V_1, V_2, V_3 and from the expression for $V_i \oplus V_j$ for distinct $i, j \in \{1, 2, 3, 4\}$, it is clear that $(V_1 \oplus V_2) \cap (V_3 \oplus V_4) \notin \tau_f$. This leads to a contradiction to $V_1 \cap V_3 = V_1$. Therefore, $V_1 \cap V_2 \neq \emptyset$. In all the cases, $V_1 \oplus V_2 \subset B$. That is $V_1 \cup V_2 \cup V_3 = B = V_1 \oplus V_2 \subset B$.

Which is impossible.

Thus, it follows that $X \neq V_i$, for all $i \in \{1,2,3,4\}$.

Case (ii)

Let $X = V_i \oplus V_j$, for some distinct $i, j \in \{1, 2, 3, 4\}$.

Without loss of generality, assume that $X = V_1 \oplus V_2$.

Then $V_1 \cup V_2 = X$ and $V_1 \cap V_2 = \emptyset$, for if $V_1 \cap V_2 \neq \emptyset$, then $V_1 \oplus V_2 = (V_1 \cup V_2) \setminus (V_1 \cap V_2) \neq X$.

Then, since for every $i \in \{1,2,3,4\}$; $V_i \subset X$, V_3 and V_4 have non-empty intersection with at least one of the sets V_1 and V_2 .

Without loss of generality, assume that

 $\mathcal{C}=V_2\cap V_3\neq \emptyset.$

Then *C* must be in τ_f and $C \neq \emptyset, V_1$.

But none of the sets $V_i \oplus V_i$ for distinct $i, j \in \{1, 2, 3, 4\}$ can be the set *C*.

Therefore, *C* should necessarily be V_2 , V_3 and V_4 .

Now, let $C = V_4$. It can be shown that $V_2 \cup V_3$ cannot be equal to V_i , for all $i \in \{1, 2, 3, 4\}$ and also $V_2 \cup V_3 \neq V_i \oplus V_j$ for all distinct $i, j \in \{1, 2, 3, 4\}$.

Hence $C \neq V_4$.

Therefore, $C = V_2$ or V_3 .

We claim that $C \neq V_2$ and $C \neq V_3$.

Suppose $C = V_3$, then $V_3 \subset V_2$.

Which implies $V_2 \cup V_3 = V_2$.

But $V_2 \cup V_3 \subset V_4$. (by our assumption)

Then $V_2 \subset V_4$ and hence $V_4 \setminus V_2 = K$, a non-empty subset of *X*.

Now, $V_2 \oplus V_4 = (V_2 \cup V_4) \setminus (V_2 \cap V_4) = V_4 \setminus V_2 = K$.

Since $K, V_3 \in \tau_f, K \cup V_3$ must be in τ_f . Since K is neither contained in V_2 nor in V_3 and $V_4 \neq K$ we get $K \cup V_3 \neq V_i$, for all $i \in \{1,2,3,4\}$.

Now,

 $V_1 \oplus V_2 = (V_1 \cup V_2) \setminus (V_1 \cap V_2) = X \setminus \emptyset = X \neq K \cup V_3.$ $V_2 \oplus V_3 = (V_2 \cup V_3) \setminus (V_2 \cap V_3) = V_2 \setminus V_3 \neq K \cup V_3.$ $V_3 \oplus V_4 = (V_3 \cup V_4) \setminus (V_3 \cap V_4) = V_4 \setminus V_3 \neq K \cup V_3.$ Hence $\cup V_3 \neq V_i \oplus V_i$, for all $i, j \in \{1, 2, 3, 4\}.$

That is $K \cup V_3 \notin \tau_f$, a contradiction to the fact that τ_f is a topology. Hence $C \neq V_3$.

A similar contradiction arise when $C = V_2$.

Therefore $C \neq V_2$ and $C \neq V_3$.

Further, $V_2 \oplus V_3 = (V_2 \cup V_3) \setminus (V_2 \cap V_3) = (V_2 \cup V_3) \setminus C$ and since $V_2 \cup V_3 \subset V_4$,

 $V_1 \oplus V_2 = (V_1 \cup V_2) \setminus (V_1 \cap V_2) = X$

and $V_3 \oplus V_4 = (V_3 \cup V_4) \setminus (V_3 \cap V_4) = V_4 \setminus V_3$.

We observe that $C \neq V_i$ for any $i \in \{1,2,3,4\}$ and $\neq V_i \bigoplus V_i$, for all distinct $i, j \in \{1,2,3,4\}$.

This is again a contradiction to the fact that $C \in \tau_f$.

Hence $\neq V_i \bigoplus V_j$, for all distinct $i, j \in \{1, 2, 3, 4\}$.

Therefore, C_5 is not topogenic.

Corollary 13

Similarly, we can prove that C_6 is not topogenic from the argument of C_5 is not topogenic.

Proposition 14

 C_7 is topogenic.

Proof

Let $V(C_7) = \{v_1, v_2, v_3, \dots, v_7\}$. Let $X = \{1,2,3\}$. Define $f: V(C_7) \to 2^X$ such that $f(v_1) = \emptyset, f(v_2) = \{1\}, f(v_3) = \{2\}, f(v_4) = \{1,3\}$ $f(v_5) = \{1,2,3\}, f(v_6) = \{1,2\}, f(v_7) = \{2,3\}.$ $f^{\oplus}(v_1v_2) = \{1\}, f^{\oplus}(v_2v_3) = \{1,2\},$ $f^{\oplus}(v_3v_4) = \{1,2,3\}, f^{\oplus}(v_4v_5) = \{2\},$ $f^{\oplus}(v_5v_6) = \{3\}, f^{\oplus}(v_6v_7) = \{1,3\}.$ Then $f(V((C_7)) \cup f^{\oplus}(E((C_7))) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\} = 2^X$

Proposition 15

 C_8 is topogenic.

Proof

Let $V(C_8) = \{v_1, v_2, v_3, ..., v_8\}.$ Let $X = \{1, 2, 3, 4\}.$ Define $f: V(C_8) \to 2^X$ such that

$$f(v_1) = \emptyset, f(v_2) = \{1, 2, 3, 4\}, f(v_3) = \{1\}$$

Therefore, C_8 is topogenic.

We propose the following problem: For further study open problem.

Problem 16

Is C_n topogenic, when $n \ge 9$.

ACKNOWLEDGEMENT

The author wish to thanks Dr. K. M. Kathiresan, for fruitful discussions whose remarks improved the presentation of paper.

REFERENCES

- 1. B.D.Acharya, Set-indexers of graph and set-graceful graphs, Bull.Allahabad Math, Soc., 16(2001), 1-23.
- 2. K.A.Germina, Jisha Eizabath Joy, Topogenic Graphs, submitted.