A STUDY ON SOME CLASSES OF TOPOGENIC GRAPH

${ }^{1} \mathrm{M}$. Anitha

ABSTRACT-- We give the definition of topogenic graph, some classes of topogenic graph and also we propose two open problems.

KEYWORDS - a study on some classes of topogenic graph

Definition 1

We identify the initial vertex of P_{n} and the central vertex of $K_{1, m}$. The resulting graph is denoted by $P_{n} \odot K_{1, m}$.

Theorem 2

$P_{3} \odot K_{1, m}$ is topogenic for every positive integer m.

Proof

$$
\operatorname{Let} V\left(K_{1, m}\right)=\left\{u_{1}, v_{1}, v_{2}, \ldots, v_{m}\right\} \text { and }
$$

$V\left(P_{3}\right)=\left\{u_{1}, u_{2}, u_{3}\right\}$.
$\operatorname{Then} V\left(P_{3} \odot K_{1, m}\right)=V\left(P_{3}\right) \cup V\left(K_{1, m}\right)$.
Choose $X=\{1,2, \ldots, m+2\}$ as the ground set.
Let $f: V\left(P_{3} \odot K_{1, m}\right) \rightarrow 2^{X}$ be defined by

$$
f\left(v_{i}\right)=\{1,2, . . i+2\}, 1 \leq i \leq m
$$

$f\left(u_{1}\right)=\emptyset, f\left(u_{2}\right)=\{1\}, f\left(u_{3}\right)=\{1,2\}$.
Then, both f and f^{\oplus} are injective.
Therefore, $f(V) \cup f^{\oplus}(E)$ forms a topology on X.
Hence $P_{3} \odot K_{1, m}$ is topogenic for every positive integer m.

Theorem 3

$P_{4} \odot K_{1, m}$ is topogenic for every positive integer m.

Proof

Let $V\left(K_{1, m}\right)=\left\{u_{1}, v_{1}, v_{2}, \ldots, v_{m}\right\}$ and
$V\left(P_{4}\right)=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$.
Then $V\left(P_{4} \odot K_{1, m}\right)=V\left(P_{4}\right) \cup V\left(K_{1, m}\right)$.
Without loss of generality, choose $X=\{1,2, \ldots, m+3\}$ as the ground set.
Let $f: V\left(P_{4} \odot K_{1, m}\right) \rightarrow 2^{X}$ be defined by

[^0]$$
f\left(v_{i}\right)=\{1,2, . . i+3\}, 1 \leq i \leq m
$$
$f\left(u_{1}\right)=\emptyset, f\left(u_{2}\right)=\{1\}, f\left(u_{3}\right)=\{2\}, f\left(u_{4}\right)=\{1,2,3\}$.
Then, both f and f^{\oplus} are injective.
Moreover, $f\left(v_{1}\right) \subset f\left(v_{2}\right) \subset \cdots \subset f\left(v_{m}\right)$ and
$f\left(u_{2}\right) \subset f\left(u_{4}\right)$ and $f\left(u_{3}\right) \subset f\left(u_{4}\right) ;$
$f\left(v_{i}\right) \cap f\left(u_{1}\right)=\emptyset \in f(V), 1 \leq i \leq m ;$
$f\left(v_{i}\right) \cup f\left(u_{1}\right)=f\left(v_{i}\right) \in f(V), 1 \leq i \leq m ;$
$f^{\oplus}\left(u_{1} u_{2}\right)=\{1\} \in f(V), f^{\oplus}\left(u_{2} u_{3}\right)=\{1,2\} \in f^{\oplus}(E)$
and $f^{\oplus}\left(u_{3} u_{4}\right)=\{1,3\} \in f^{\oplus}(E)$.
Therefore, $f(V) \cup f^{\oplus}(E)$ forms a topology on X.
Hence $P_{4} \odot K_{1, m}$ is topogenic for every positive integer m.

Theorem 4

$P_{5} \odot K_{1, m}$ is topogenic for every positive integer m.

Proof

Let $V\left(K_{1, m}\right)=\left\{u_{1}, v_{1}, v_{2}, \ldots, v_{m}\right\}$ and
$V\left(P_{4}\right)=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$.
Then $V\left(P_{5} \odot K_{1, m}\right)=V\left(P_{5}\right) \cup V\left(K_{1, m}\right)$.
Without loss of generality, choose $X=\{1,2, \ldots, m+3\}$ as the ground set.

Let $f: V\left(P_{5} \odot K_{1, m}\right) \rightarrow 2^{X}$ be defined by

$$
f\left(v_{i}\right)=\{1,2, . . i+3\}, 1 \leq i \leq m
$$

$f\left(u_{1}\right)=\emptyset, f\left(u_{2}\right)=\{1\}, f\left(u_{3}\right)=\{2\}, f\left(u_{4}\right)=\{1,3\}$,
$f\left(u_{4}\right)=\{1,2,3\}$.
Then, both f and f^{\oplus} are injective.
$f\left(v_{i}\right) \cap f\left(u_{1}\right)=\emptyset \in f(V), 1 \leq i \leq m ;$
$f^{\oplus}\left(u_{1} u_{2}\right)=\{1\} \in f(V), f^{\oplus}\left(u_{2} u_{3}\right)=\{1,2\} \in f^{\oplus}(E)$,
$f^{\oplus}\left(u_{3} u_{4}\right)=\{1,2,3\} \in f(V)$ and
$f^{\oplus}\left(u_{4} u_{5}\right)=\{2\} \in f(V)$.
Therefore, $f(V) \cup f^{\oplus}(E)$ forms a topology on X.
Hence $P_{5} \odot K_{1, m}$ is topogenic for every positive integer m.

Corollary 5

Similarly, we can prove $P_{n} \odot K_{1, m}$, for
$n=6,7,8,9,10,11,12,13,14$ is topogenic from the argument of P_{n}, for $n=6,7,8,9,10,11,12,13,14$ is topogenic.
Hence $P_{n} \odot K_{1, m}$, for $n=6,7,8,9,10,11,12$,
13,14 is topogenic.

Problem 6

International Journal of Psychosocial Rehabilitation, Vol. 24, Issue 08, 2020
ISSN: 1475-7192
Is $P_{n} \odot K_{1, m}$ is topogenic for every positive integers m and $n \geq 15$.

Definition 7

We identify the central vertex of $K_{1, p}$ and the central vertex of $K_{1, m, n}$. The resulting graph is denoted by $K_{1, p} \odot K_{1, m, n}$.

Theorem 8

$K_{1, p} \odot K_{1, m, n}$ is topogenic for every positive integer m, n and p.

Proof

Let $V\left(K_{1, p}\right)=\left\{u_{0}, u_{1}, u_{2}, \ldots, u_{p}\right\}$ and

$$
V\left(K_{1, m, n}\right)=\left\{u_{0}, v_{1}, v_{2}, \ldots, v_{m}, w_{1}, w_{2}, \ldots, w_{n}\right\}
$$

Then $V\left(\left(K_{1, p}\right) \odot\left(K_{1, m, n}\right)\right)=V\left(K_{1, p}\right) \odot V\left(K_{1, m, n}\right)$
Without loss of generality, choose
$X=\{1,2, \ldots, m+n+p\}$ as the ground set.
Let $f: V\left(K_{1, p} \odot K_{1, m, n}\right) \rightarrow 2^{X}$ be defined by
$f\left(u_{i}\right)=\{1,2, \ldots, i\}, m+n+1 \leq i \leq p, f\left(u_{0}\right)=\emptyset$.
Also, $f\left(v_{i}\right)=\{1,2, \ldots, i\}, 1 \leq i \leq m$;
$f\left(w_{j}\right)=\{1,2, \ldots, m+j\}, 1 \leq j \leq n$.
Let f^{\oplus} be the induced edge function.
Then both f and f^{\oplus} are injective.
Therefore, $f(V) \cup f^{\oplus}(E)$ forms a topology on X.
Hence $K_{1, p} \odot K_{1, m, n}$ is topogenic for every positive integer m, n and p.

Example 9

If the topogenic graph G is connected, then the corresponding topology is either connected or not connected. For,

Figure 1.1
$\tau=\{\varnothing,\{1\},\{1,2\},\{1,2,3\}\}$.
Therefore, (X, τ) is connected.
Then, the next example shows that if the graph is connected, then the topology is not necessarily connected.

Figure 1.2
$\tau=\{\emptyset,\{1\},\{2\},\{1,2\},\{1,3\},\{1,2,3\}\}$.
Therefore, (X, τ) is not connected.

Example 10

If the topogenic graph G is disconnected, then the topology is either connected or not connected.
For,

Figure 1.3

$\tau=\{\emptyset,\{1\},\{2\},\{1,2\},\{1,2,3\}\}$.
Therefore, (X, τ) is connected.
Then, the next example show that if the graph is disconnected, then the topology is not connected.

Figure 1.4

$\tau=\{\emptyset,\{1\},\{2\},\{1,2\},\{1,2\}\}$.
Therefore, (X, τ) is not connected.

Remark 11

From the above examples we conclude that the graph C_{3} and C_{4} are topogenic.

Proposition 12

C_{5} is not topogenic.

Proof

If possible, let C_{5} be topogenic, which implies there exists a topogenic set-indexer f of C_{5} with respect to some non-empty ground set, say X, so that
$\tau_{f}=f\left(V\left(C_{5}\right)\right) \cup f^{\oplus}\left(E\left(C_{5}\right)\right)$ is a topology on X.
Then by Theorem 3.11, for a topogenic cycle C_{n},

$$
n+1 \leq \rho^{0} \leq 2 n-2
$$

For $C_{5}, 6 \leq \rho^{0} \leq 8$.
Since f is injective, the empty set, \varnothing cannot be obtained as a symmetric difference of two non-empty sets.
Hence, empty set, \emptyset should necessarily be assigned to a vertex.
That is, $\emptyset \in f\left(V\left(C_{5}\right)\right)$.
Hence, let $f\left(V\left(C_{5}\right)\right)=\left\{\varnothing, V_{1}, V_{2}, V_{3}, V_{4}\right\}$, where $V_{1}, V_{2}, V_{3}, V_{4}$ are non-empty subsets of X.
Then, $f^{\oplus}\left(E\left(C_{5}\right)\right)=\left\{V_{1} \oplus \emptyset, V_{1} \oplus V_{2}, V_{2} \oplus V_{3}, V_{3} \oplus V_{4}, V_{4} \oplus V_{5}\right\}$.
Since τ_{f} is a topology on X, the entire set X must be an element of τ_{f}.
There arise two cases namely, $X=V_{i}$ for some $i \in\{1,2,3,4\}$, or $X=V_{i} \oplus V_{j}$ for some distinct $i, j \in\{1,2,3,4\}$.
Case (i): $X=V_{i}$ for some i.
Step 1
Without loss of generality, let $X=V_{4}$.
Then V_{1}, V_{2}, V_{3} can be such that $V_{1} \cup V_{2} \cup V_{3}=V_{4}$ or
$V_{1} \cup V_{2} \cup V_{3} \subset V_{4}$.
Let $V_{1} \cup V_{2} \cup V_{3}=V_{4}$.
If the sets, V_{1}, V_{2}, V_{3} are pairwise disjoint, then
$V_{1} \oplus V_{2}=\left(V_{1} \cup V_{2}\right) \backslash\left(V_{1} \cap V_{2}\right)=V_{1} \cup V_{2}$ and

$$
V_{4} \oplus V_{3}=\left(V_{4} \cup V_{3}\right) \backslash\left(V_{4} \cap V_{3}\right)
$$

$=V_{4} \backslash V_{3}$
$=X \backslash V_{3}$
$=V_{1} \cup V_{2}$, a contradiction to the injectivity of f^{\oplus}.
Therefore, atleast two of the sets V_{1}, V_{2}, V_{3} must have a common element.
Without loss of generality, suppose $V_{1} \cap V_{2}=A \neq \emptyset$.
Since τ_{f} is a topology on X, we have A must be in τ_{f}.

International Journal of Psychosocial Rehabilitation, Vol. 24, Issue 08, 2020
ISSN: 1475-7192
Therefore, $A=V_{i}$ for some $i \in\{1,2,3\}$ or $A=V_{i} \oplus V_{j}$ for some distinct $i, j \in\{1,2,3\}$, for neither $A=V_{4}=X$ nor $A=V_{4} \oplus \emptyset$.

So let $A=V_{3}$.
Then $V_{1} \cup V_{2} \cup V_{3}=V_{1} \cup V_{2} \cup A=V_{1} \cup V_{2}=V_{4}$.
Then $V_{1} \oplus V_{2}=\left(V_{1} \cup V_{2}\right) \backslash\left(V_{1} \cap V_{2}\right)=V_{4} \backslash A=V_{1} \cup V_{2}$.

$$
\begin{aligned}
V_{3} \oplus V_{4}= & \left(V_{3} \cup V_{4}\right) \backslash\left(V_{3} \cap V_{4}\right)=V_{4} \backslash V_{3}=X \backslash A \\
& =V_{1} \cup V_{2} .
\end{aligned}
$$

Which is a contradiction to the injectivity of f^{\oplus}.
Therefore, $A=V_{1}$ or $A=V_{2}$.
Let $A=V_{1}$. Then $V_{1} \cup V_{2}=V_{2}$.
Now, $V_{2} \cap V_{3} \neq \emptyset$. Since otherwise, if $V_{2} \cap V_{3}=\emptyset$, then
$V_{1} \cup V_{2} \cup V_{3}=V_{2} \cup V_{3}$ and
by assumption $V_{2} \cup V_{3}=V_{4}$.
Then, $V_{2} \oplus V_{3}=\left(V_{2} \cup V_{3}\right) \backslash\left(V_{2} \cap V_{3}\right)=V_{2} \cup V_{3}=V_{4}$
But $V_{4} \oplus \emptyset=V_{4}$, a contradiction to injectivity of f^{\oplus}.
Therefore, $V_{2} \cap V_{3} \neq \emptyset$.
Also, $V_{1} \oplus V_{2}=\left(V_{1} \cup V_{2}\right) \backslash\left(V_{1} \cap V_{2}\right)=V_{2} \backslash V_{1}$
and $V_{3} \oplus V_{4}=\left(V_{3} \cup V_{4}\right) \backslash\left(V_{3} \cap V_{4}\right)=V_{4} \backslash V_{3}$

$$
\begin{aligned}
& =\left(V_{1} \cup V_{2} \cup V_{3}\right) \backslash V_{3} \\
& =\left(V_{1} \backslash V_{3}\right) \cup\left(V_{2} \backslash V_{3}\right) \cup\left(V_{3} \backslash V_{3}\right) \\
& =\left(V_{1} \backslash V_{3}\right) \cup\left(V_{2} \backslash V_{3}\right) \\
& =\left(V_{1} \backslash V_{2}\right) \backslash V_{3} \\
& =V_{2} \backslash V_{3}
\end{aligned}
$$

But by the choices of $V_{1}, V_{2}, V_{3}, V_{4}$ we have a contradiction to the injectivity of f^{\oplus}.
Hence $A \neq V_{1}$.
Analogously, we can show that $A \neq V_{2}$.
That is, $A \neq V_{i}$, for all $i \in\{1,2,3,4\}$.

Step 2
Hence A being an element of $\tau_{f}, A=V_{i} \oplus V_{j}$ for some $i, j \in\{1,2,3,4\}$.
But $V_{1} \oplus V_{2}=\left(V_{1} \cup V_{2}\right) \backslash\left(V_{1} \cap V_{2}\right)=\left(V_{1} \cup V_{2}\right) \backslash A$.
$V_{2} \oplus V_{3}=\left(V_{2} \cup V_{3}\right) \backslash\left(V_{2} \cap V_{3}\right)$.

$$
V_{3} \oplus V_{4}=\left(V_{3} \cup V_{4}\right) \backslash\left(V_{3} \cap V_{4}\right)=V_{4} \backslash V_{3}=\left(V_{1} \cup V_{2}\right) \backslash V_{3}
$$

and hence none of the sets $V_{i} \oplus V_{j}$ for distinct
$i, j \in\{1,2,3,4\}$ equals A.
Hence $A=V_{1} \cap V_{2} \notin \tau_{f}$, again a contradiction to the fact that τ_{f} is a topology on X.
The above analysis implies that $V_{1} \cup V_{2} \cup V_{3} \neq X$.
Then $V_{1} \cup V_{2} \cup V_{3} \subset V_{4}=X$.
Let $V_{1} \cup V_{2} \cup V_{3}=B$.
Since τ_{f} being a topology, B must be in τ_{f}.

International Journal of Psychosocial Rehabilitation, Vol. 24, Issue 08, 2020
ISSN: 1475-7192
Clearly $B \nsubseteq V_{i}$ and $B \neq V_{i}$ for any $i \in\{1,2,3,4\}$, and not a subset of the union of any pair of them.
Hence $B=V_{i} \oplus V_{j}$ for some distinct $i, j \in\{1,2,3,4\}$.
Without loss of generality, let $B=V_{1} \oplus V_{2}$.
Then $V_{1} \cup V_{2} \cup V_{3}=B=V_{1} \oplus V_{2}$.
Then V_{1}, V_{2} can be such that $V_{1} \cup V_{2} \subset B$ or $V_{1} \cup V_{2}=B$
Suppose $V_{1} \cup V_{2} \subset B$.
Then $V_{1} \cap V_{2}=\emptyset$ which implies

$$
V_{1} \oplus V_{2}=\left(V_{1} \cup V_{2}\right) \backslash\left(V_{1} \cap V_{2}\right)=\left(V_{1} \cup V_{2}\right) \subset B
$$

and
$V_{1} \oplus V_{2}=\left(V_{1} \cup V_{2}\right) \backslash\left(V_{1} \cap V_{2}\right) \subset B \backslash\left(V_{1} \cup V_{2}\right) \subset B$.
Suppose, $V_{1} \cup V_{2}=B$.
Then $V_{1} \cap V_{2} \neq \emptyset$ which implies
$V_{1} \oplus V_{2}=\left(V_{1} \cup V_{2}\right) \backslash\left(V_{1} \cap V_{2}\right)=B \backslash\left(V_{1} \cup V_{2}\right) \subset B$ and $V_{1} \cap V_{2} \neq \emptyset$ which implies suppose V_{1} and V_{3} are disjoint sets, then $V_{1} \in \tau_{f}$ and $V_{3} \in \tau_{f}$.

Since τ_{f} is a topology, $V_{1} \cup V_{3} \in \tau_{f}$.
By our choices of V_{1}, V_{2}, V_{3} and V_{4} and from the expressions for $V_{i} \oplus V_{j}$ for distinct $i, j \in\{1,2,3,4\}$, it is clear that $V_{1} \cup V_{3} \notin \tau_{f}$, this leads to a contradiction.

Therefore, V_{1} and V_{3} must have a common element.
Therefore, there exists D such that $D=V_{1} \cap V_{3}$ and $D \neq \emptyset$.
Which implies $D=V_{1} \cap V_{3} \subset B$
Which implies $D \in \tau_{f}$.
By our choices of V_{1}, V_{2}, V_{3} and V_{4} can be such that $V_{4} \neq D$.
Therefore, $D=V_{1}$ or $D=V_{2}$ or $=V_{3}$.
Suppose $D \subseteq V_{2}$.
$D \subseteq V_{1} \cap V_{2}$.
Which is a contradiction.
Therefore, $D=V_{1}$ or $D=V_{2}$.
Suppose $D=V_{3}$.
Then $V_{1} \cap V_{3}=V_{3}$.
Then $V_{1} \oplus V_{2}=\left(V_{1} \cup V_{2}\right) \backslash\left(V_{1} \cap V_{2}\right)=V_{1} \cup V_{2} \in \tau_{f}$.

$$
V_{3} \oplus V_{4}=\left(V_{3} \cup V_{4}\right) \backslash\left(V_{3} \cap V_{4}\right)=V_{4} \backslash V_{3} \in \tau_{f}
$$

Since $V_{1} \oplus V_{2}, V_{3} \oplus V_{4} \in f^{\oplus}\left(E\left(C_{5}\right)\right) \in \tau_{f}$.
But by choices of V_{1}, V_{2}, V_{3} and from the expression for $V_{i} \oplus V_{j}$ for distinct $i, j \in\{1,2,3,4\}$, it is clear that
$\left(V_{1} \oplus V_{2}\right) \cap\left(V_{3} \oplus V_{4}\right) \notin \tau_{f}$.
This leads to a contradiction to $V_{1} \cap V_{3}=V_{1}$.
Therefore, $V_{1} \cap V_{2} \neq \emptyset$.
In all the cases, $V_{1} \oplus V_{2} \subset B$.
That is $V_{1} \cup V_{2} \cup V_{3}=B=V_{1} \oplus V_{2} \subset B$.
Which is impossible.

Thus, it follows that $X \neq V_{i}$, for all $i \in\{1,2,3,4\}$.

Case (ii)

Let $X=V_{i} \oplus V_{j}$, for some distinct $i, j \in\{1,2,3,4\}$.
Without loss of generality, assume that $X=V_{1} \oplus V_{2}$.
Then $V_{1} \cup V_{2}=X$ and $V_{1} \cap V_{2}=\emptyset$, for if $V_{1} \cap V_{2} \neq \emptyset$, then $V_{1} \oplus V_{2}=\left(V_{1} \cup V_{2}\right) \backslash\left(V_{1} \cap V_{2}\right) \neq X$.
Then, since for every $i \in\{1,2,3,4\} ; V_{i} \subset X, V_{3}$ and V_{4} have non-empty intersection with atleast one of the sets V_{1} and V_{2}.

Without loss of generality, assume that
$C=V_{2} \cap V_{3} \neq \emptyset$.
Then C must be in τ_{f} and $C \neq \emptyset, V_{1}$.
But none of the sets $V_{i} \oplus V_{j}$ for distinct $i, j \in\{1,2,3,4\}$ can be the set C.
Therefore, C should necessarily be V_{2}, V_{3} and V_{4}.
Now, let $C=V_{4}$.It can be shown that $V_{2} \cup V_{3}$ cannot be equal to V_{i}, for alli $\in\{1,2,3,4\}$ and also $V_{2} \cup V_{3} \neq V_{i} \oplus V_{j}$ for all distinct $i, j \in\{1,2,3,4\}$.

Hence $C \neq V_{4}$.
Therefore, $C=V_{2}$ or V_{3}.
We claim that $C \neq V_{2}$ and $C \neq V_{3}$.
Suppose $C=V_{3}$, then $V_{3} \subset V_{2}$.
Which implies $V_{2} \cup V_{3}=V_{2}$.
But $V_{2} \cup V_{3} \subset V_{4}$. (by our assumption)
Then $V_{2} \subset V_{4}$ and hence $V_{4} \backslash V_{2}=K$, a non-empty subset of X.
Now, $V_{2} \oplus V_{4}=\left(V_{2} \cup V_{4}\right) \backslash\left(V_{2} \cap V_{4}\right)=V_{4} \backslash V_{2}=K$.
Since $K, V_{3} \in \tau_{f}, K \cup V_{3}$ must be in τ_{f}. Since K is neither contained in V_{2} nor in V_{3} and $V_{4} \neq K$ we get $K \cup V_{3} \neq$ V_{i}, for all $i \in\{1,2,3,4\}$.

Now,
$V_{1} \oplus V_{2}=\left(V_{1} \cup V_{2}\right) \backslash\left(V_{1} \cap V_{2}\right)=X \backslash \emptyset=X \neq K \cup V_{3}$.
$V_{2} \oplus V_{3}=\left(V_{2} \cup V_{3}\right) \backslash\left(V_{2} \cap V_{3}\right)=V_{2} \backslash V_{3} \neq K \cup V_{3}$.
$V_{3} \oplus V_{4}=\left(V_{3} \cup V_{4}\right) \backslash\left(V_{3} \cap V_{4}\right)=V_{4} \backslash V_{3} \neq K \cup V_{3}$.
Hence $\cup V_{3} \neq V_{i} \oplus V_{j}$, for all $i, j \in\{1,2,3,4\}$.
That is $K \cup V_{3} \notin \tau_{f}$, a contradiction to the fact that τ_{f} is a topology. Hence $C \neq V_{3}$.
A similar contradiction aries when $C=V_{2}$.
Therefore $C \neq V_{2}$ and $C \neq V_{3}$.
Further, $V_{2} \oplus V_{3}=\left(V_{2} \cup V_{3}\right) \backslash\left(V_{2} \cap V_{3}\right)=\left(V_{2} \cup V_{3}\right) \backslash C$
and since $V_{2} \cup V_{3} \subset V_{4}$,

$$
V_{1} \oplus V_{2}=\left(V_{1} \cup V_{2}\right) \backslash\left(V_{1} \cap V_{2}\right)=X
$$

and $V_{3} \oplus V_{4}=\left(V_{3} \cup V_{4}\right) \backslash\left(V_{3} \cap V_{4}\right)=V_{4} \backslash V_{3}$.
We observe that $C \neq V_{i}$ for any $i \in\{1,2,3,4\}$ and $\neq V_{i} \oplus V_{j}$, for all distinct $i, j \in\{1,2,3,4\}$.
This is again a contradiction to the fact that $C \in \tau_{f}$.
Hence $\neq V_{i} \oplus V_{j}$, for all distinct $i, j \in\{1,2,3,4\}$.

International Journal of Psychosocial Rehabilitation, Vol. 24, Issue 08, 2020
ISSN: 1475-7192
Therefore, C_{5} is not topogenic.

Corollary 13

Similarly, we can prove that C_{6} is not topogenic from the argument of C_{5} is not topogenic.

Proposition 14

C_{7} is topogenic.

Proof

Let $V\left(C_{7}\right)=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{7}\right\}$.
Let $X=\{1,2,3\}$.
Define $f: V\left(C_{7}\right) \rightarrow 2^{X}$ such that

$$
f\left(v_{1}\right)=\emptyset, f\left(v_{2}\right)=\{1\}, f\left(v_{3}\right)=\{2\}, f\left(v_{4}\right)=\{1,3\}
$$

$f\left(v_{5}\right)=\{1,2,3\}, f\left(v_{6}\right)=\{1,2\}, f\left(v_{7}\right)=\{2,3\}$.
$f^{\oplus}\left(v_{1} v_{2}\right)=\{1\}, f^{\oplus}\left(v_{2} v_{3}\right)=\{1,2\}$,
$f^{\oplus}\left(v_{3} v_{4}\right)=\{1,2,3\}, f^{\oplus}\left(v_{4} v_{5}\right)=\{2\}$,
$f^{\oplus}\left(v_{5} v_{6}\right)=\{3\}, f^{\oplus}\left(v_{6} v_{7}\right)=\{1,3\}$.
Then $f\left(V\left(\left(C_{7}\right)\right) \cup f^{\oplus}\left(E\left(\left(C_{7}\right)\right)=\{\emptyset,\{1\},\{2\},\{3\}\right.\right.$,

$$
\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}=2^{X}
$$

Proposition 15

C_{8} is topogenic.

Proof

Let $V\left(C_{8}\right)=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{8}\right\}$.
Let $X=\{1,2,3,4\}$.
Define $f: V\left(C_{8}\right) \rightarrow 2^{X}$ such that

$$
f\left(v_{1}\right)=\emptyset, f\left(v_{2}\right)=\{1,2,3,4\}, f\left(v_{3}\right)=\{1\},
$$

$f\left(v_{4}\right)=\{2\}, f\left(v_{5}\right)=\{1,3\}, f\left(v_{6}\right)=\{1,2,3\}$,
$f\left(v_{7}\right)=\{1,2\}, f\left(v_{8}\right)=\{2,3\}$.
Then $f\left(V\left(\left(C_{8}\right)\right) \cup f^{\oplus}\left(E\left(\left(C_{8}\right)\right)=\{\varnothing,\{1\},\{2\},\{3\}\right.\right.$,
$\{1,2\},\{1,3\},\{2,3\},\{1,2,3\},\{2,3,4\},\{1,2,3,4\}\}$.
Therefore, C_{8} is topogenic.
We propose the following problem: For further study open problem.

Problem 16

Is C_{n} topogenic, when $n \geq 9$.

ACKNOWLEDGEMENT

The author wish to thanks Dr. K. M. Kathiresan, for fruitful discussions whose remarks improved the presentation of paper.

REFERENCES

1. B.D.Acharya, Set-indexers of graph and set-graceful graphs, Bull.Allahabad Math, Soc., 16(2001), 1-23.
2. K.A.Germina, Jisha Eizabath Joy, Topogenic Graphs, submitted.

[^0]: ${ }^{1}$ Department of Mathematics, Kalasalingam Academy of Research and Education, India, anivic1992@gmail.com

