Integration of Problem Based Learning and Scaffolding for Educational Purpose: A review

*1Mohammed Musa Girei, ²Zaleha Abdullah

ABSTRACT--Problem-based learning (PBL) is a student-centered approach that has potential to foster independent study and critical thinking skills. This review discusses how PBL incorporates scaffolding that could benefit vocational learning in Education. These are strategies employed to expose students to real-world problem solving, critical thinking skills and effective knowledge transfer through active engagement. This review employed a systematic approach. Eleven (11) research articles were selected and scrutinized. Results indicated that undertaking the role of a specialist as instructor can take a dynamic task in PBL strategy. Provide the necessary resources to build learners who could address ill-structured problems. Be able to use the application of real-life experience and specialist-level strategies to address the cognitive task. This complex skill cannot be acquired through conventional teaching. However, can be acquired through the scaffolding of progressive, stimulating learning opportunities, routine exercise and self-reflection. Solving real-world problems entails active collaboration and exploiting the potentials of technologies available for us. Thus, instructors need to be contented as facilitators of a learning situation that is often complex and challenging task. Consequently, it is established that the PBL and scaffolding have the potentials to enhance students' critical thinking skills. Though, with a careful structure of authentic learning situation. The application of appropriate technology to offer an on-line scaffolding strategy can support student's engagement with the learning activities. Though, if question prompts in PBL is provided in a complicated or difficult manner, the question prompts could be an interruption of learning instead of assistance.

Keywords-- Online scaffolding; Problem-Based Learning; Engagement; Critical thinking skills.

I. INTRODUCTION

Modern pedagogy needs to prepare an innovative set of students than that fostered all the way through (Ginaya, Nyoman, & Astuti, 2020). The present review put forward information on issues about the development of an instructional method of problem-based learning (PBL) and scaffolding. It assists teachers to produce an innovative kind of learning environment for students. "Generic skills" including critical thinking, collaborative learning, problem-solving skills, and offering concepts are important in present-day society (Ginaya et al. 2020). To assist exploit the possible cognitive improvement of the students in Agricultural education, PBL could be integrated with an emphasis on teacher training to embark on an online scaffolding teaching approach.

Scaffolding as an important component is a learning strategy that seeks to integrate the activity demonstrating a model, planned supervision to guide, collaborative trends of preparation in the area of instructional reasoning (Jamari, Abdullah, Mohamed, Zaid, & Aris, 2018; Neba, Shey, & Bruno 2019). The integration of problem-based learning (PBL) and scaffolding as an important component involved adding more innovative techniques in

¹*Department of Science & Mathematics Education, and Creative Multimedia, School of Education, Universiti Teknologi, Malaysia, mgmusa2@graduate.utm.my

² Department of Science & Mathematics Education, and Creative Multimedia, School of Education, Universiti Teknologi, Malaysia

instructional methods. While it could be utilized, not only for merely teaching and surface transfer of information as knowledge; the intent is to serve as an interactive framework for fostering the 21st century skills among students to become more expertise and function in a specific field (Alger & Kopcha, 2009; Jamari et al. 2018). The combination of these methods is as a result of the anticipated educational outcomes. Devices a reliable and consistent interdisciplinary task, frequently asses and restructure to facilitate student's engagement and academic achievement with everlasting development of education (Evans, 2016). Integrating PBL and Scaffolding generates a conventional learning situation through technology-based scaffolding. It leads to the mastery of critical thinking skills rightly be related to individual students' life after graduation (Loyens, Kirshiner, & Paas, 2011).

1.1 Advantages and Limitation of PBL

Problem-based learning introduces at the commencement of instruction an ill-structured, real-life problem for students to critically assess, collaborate and deliberate on the information. Come to a compromised base on their understanding and build new knowledge to solve the problem in a group (Phungsuk, Viriyavejakul, & Ratanaolarn, 2017; Yew & Goh, 2016). It implies that the ill-structured problem is a deliberate act to trigger learning among students. PBL was pioneered by a school of medicine, modified in related institutions and more. It generated a verity of PBL modifications based on the suitability and existing problem offered by the teacher in accordance with the delivering other academic supports (Servant-Miklos 2019). Problem-based learning works towards improving the satisfaction of students' knowledge, reasoning skills and problem-solving by engaging them with real-life and problems that have no specific answers, inform of ill-structured problems (Fidan & Tuncel, 2019; Thompson, 2019). In PBL, students are required to search for information to study a problem, advance the claims, debate on issues to support these claims (Moallem, Hung, & Dabbagh, 2019).

Scholars have confirmed the effects of PBL on enriching the students' knowledge construction and critical thinking skills in education (Chung, 2019; Niwa et al. 2016). To reassessed the process of PBL as well as its effectiveness in various studies in Singapore, Yew & Go (2016) inferred that PBL is an eminent technique for teaching and learning especially in terms of higher retention and application of knowledge. PBL when applied in a different field, shows that students gained higher performance than those in a conventional class. However, studies on the process of PBL, are still inconclusive as to which component(s) of PBL most significantly impact students' learning.

Disadvantages of PBL as hypothesized by Narad, Chari, & Gupta (2016), include the perception of students on the complex task involved in PBL activities, and more time-consuming in designing to development. Learners who are unable to link knowledge without specifically defined objectives reveal a justification for another limitation of PBL (Verstegen et al., 2019). In this regard, permitting PBL to be managed by instructors that can mitigate problems, particularly when they have practiced both the PBL and a scaffolding instructional approach. Yet, PBL students find it difficult to adjust as they approach the ill structured-problems presented in PBL the way they can be done in a problem that is well-structured (Tawfik et al. 2019). Therefore, in order to experience a successful PBL learning situation, students required a supportive agent to help initiate a resolution to difficult and ill-structured activities or problems (Kim, Belland, & Walker 2018).

Scaffolding in education is referred to as supportive abilities to assist the student in engaging students to advance in activities and skill gain that cannot be achieved on their own (Kim, Belland, & Axelrod 2019). It is a

guiding support for students to experience an easy and meaningful operation throughout their learning process (Jumaat & Tasir 2016), scaffolding students has been mostly used to overcome the problems as a subject matter. Scaffolding could be a technology-based, teacher based a peer-based scaffolding to support students learning. Scaffolding can also be based on its types such as metacognitive, strategic, procedural and conceptual type (Kim & Lim, 2019). When provided to support students' needs, scaffolding is able to maintain and enhance their engagement by motivating them gradually through the provision of hints as an online environment until they resumed to practice and take responsibility for their learning.

The utilization of scaffolding has been useful in developing a student's critical thinking skills (Kitsantas et al. 2019). Studies recommended for a scaffolding design framework that considers the features of problem PBL. Real ill-structured/real-world problems presented at the commencement of PBL are more often above students' ability without any support, as a result, a negative effect on students' interest and motivation to study (Barrows & Tamblyn 1980). Hence, involvement in activities that could maintain and enhance student's engagement and academic achievement through scaffolding is significant for the students to experience an optimal challenge in the PBL task. (Kim, Belland, Lefler, et al. 2019). It is against this background that this study attempts to reassess the integration of Problem Based Learning and online Scaffolding for Educational purposes.

II. METHODOLOGY/MATERIALS

Problem-Based Learning (PBL) and online scaffolding in combination with technology are widely used in science including agricultural and vocational education (Jabarullah & Iqbal Hussain, 2019; Schwendimann, Kappeler, Mauroux, & Gurtner, 2018; Wahyu, Kurnia, & Syaadah, 2018). The model approach adopted in this review as summarized in Figure 1, has to do with the application of PBL in higher institutions. As a result, difficulties involved in the application of PBL and scaffolding in the educational setting. The model employed a systematic approach to the identification of data sources. The search words applied are PBL, problem-solving, collaboration, self-directed learning, critical thinking skills student engagement, learning outcome (Table 1).

Source	Search terms									
Model	PBL, problem-solving, collaboration, self-directed learning, critical									
	thinking skills student engagement, learning outcome.									
Pathways	Scaffolding, technical and vocational education, higher education									
Type of	All studies on PBL, problem-solving, collaboration, self-directed learning,									
studies	critical thinking skills student engagement, learning outcome.									

Table 1: Summarized search terms applied in search of the database and corresponding synthesis.

A total of 8916 potential articles were identified in the Scopus database, Science Direct and other databases. Completing the review processes summarized in Figure 2, eleven (11) papers/articles were selected and employed in the review. These studies present approaches relating to PBL and online Scaffolding. Apart from two studies (Garren 2018 & Fernando 2018), the remaining studies have some analyses on PBL and scaffolding. This demonstrated the relevance of PBL and scaffolding in interdisciplinary education and agriculture.

Figure 2: A systematic procedure utilized for the present review comprising the result from documentation of literature evaluation, accessibility, and inclusion of the final study.

III. RESULTS AND FINDINGS

Table 2: summarized the studies employed in this review based on online scaffolding to support the PBL learning environment. In that regards, Kim, Belland, & Walker (2018) reviewed the effects technology-based scaffolding in a problem-based learning setting in science education. The review employed a Meta-analysis. Results indicate that online scaffolding has a significant impact on PBL students' knowledge construction and academic outcome. Although, question prompts to commence in PBL is provided in a difficult manner, the question could be a hinderance to learning instead of assistance. This calls for a reassessment of the theoretical basis of implementation of PBL, reasons for its failure to prosper as expected to provide a remedy. As a student-centered strategy, Tawfik (2016) revealed that there is a great amount of inconsistency in the implementation of PBL leading to failure and criticisms of the instructional approach. Nevertheless, the need to further explore how to incorporate technology tools to ease managing a PBL approach for students' engagement for the benefit of maximum learning outcome is an important task in education.

Based on the forgoing, from the table above, (Serife 2016) examined the effectiveness of online scaffolding using the stages in the PBL learning strategy through technology as a mediator of the learning process to construct new knowledge. The study used two groups (i) experimental and (ii) control groups. Results revealed that Scaffolding problem-based in online discussion increase students' activities in the learning process. Thus, the use of suitable technology like social media to provide on-line scaffolding in the PBL learning environment can support student engagement with the learning activities.

In the same development, Garren & Skylstad (2016) attempted to increase student learning through the utilization of an online scaffolding environment using learning modules. Although he did not utilize PBL in the learning scenario, the outcome indicated that the use of online scaffolding with modules significantly improved

students' performance in exams than students who did not use the module. However, implementation also experienced some little challenges in the design of the Moodle as a viable tool and these include ways images can be presented and linked. Thus scaffolding students through social media can facilitate the process of instructional design and ease students access resource materials as well.

To support students in the PBL learning situation, Haruehansawasin & Kiattikomol (2018) investigated the approaches in scaffolding. Results showed that the use of computer spreadsheets as online scaffolding significantly affects the learning outcome of the students. Nevertheless, teachers' use of a suitable scaffolding strategy can improve student's achievement and encourage active deliberation in a PBL context. To compare the effectiveness of different types of scaffolding, Kim & Lim (2019) used reflective and supportive scaffolding on student's problem solving and academic achievement in an online learning system. The study revealed that students supported with a reflective type of scaffolding experienced higher achievement than their counterparts with supportive scaffolding. Yet, addressing which type of scaffolding that effectively encourages student-centered and online team collaboration is of great importance. This will aid in understanding to support agricultural technology, student's engagement and academic achievement.

S	Study	PB	Scaffo	Objectives	Area	Meth	Result	Remark
/		L	lding			ods		
Ν								
1	Kim,		~	To study the	STEM	Revie	Technology-based	Though, if question
	Belland,			effects	Educat	w	scaffolding has a	prompts in PBL is
	&			technology-	ion	(Meta	significant impact	provided in a
	Walker			based	Mathe	-	on PBL students'	complicated or
	(2018)			scaffolding in	matics	analy	knowledge	difficult manner, the
				problem-based		sis)	construction and	question prompts
				learning (PBL)			academic	could be an
				in the learning			performance.	interruption of
				environment in				learning instead of
				science				assistance.
				education.				
2	Tawfik		~	To reassess the	Discipl	Revie	There is a great	The need to further
	&			theoretical	inary	w	amount of	explore how to
	Kolodne			basics of	subject		inconsistency in	incorporate
	r (2016)			implementation	s		the	technology tools to
				of PBL reasons			implementation of	ease managing a PBL
				for its failure to			PBL	approach for
				prosper as			leading to failure	students' engagement
				expected to			and criticisms of	for maximum
				provide a			the instructional	learning outcome is
				remedy.			approach.	an important task.

Table 2: Example of studies on problem-based learning and online scaffolding

3	Serife		√	studied the	Instruc	Quasi	Scaffolding	The use of social
	(2016)			effectiveness of	tional	-	problem-based in	media to provide an
				online	technol	exper	online	on-line scaffolding
				scaffolding	ogy	iment	discussion	can support student
				using technology	design.	al	increase students'	engagement with the
				in the PBL			engagement in the	learning activities.
				process to			learning process.	
				conduct new				
				knowledge.				
4	Garren	No	✓	To increase	Medica	Exper	The use of the	The implement also
	&			student learning	1	iment	online scaffolding	experienced some
	Skylstad			in mathematics		al	of modules	little challenges
	(2016)			through the			significantly	confines in the design
				utilization of an			improved	of the Moodle as a
				online			students'	viable tool and these
				scaffolding			performance in	include ways images
				environment			exams than	can be presented and
				using learning			students who did	linked.
				modules.			not use the	
							module.	
~	TT 1			T		T		T
5	Harueha		V	Investigated the	Compu	Exper	The use of	Teachers' use of a
	nsawasi			approaches in	ler advaati	al	computer	suitable scallolding
	ll &			support students	educati	ai	spreadsneets as	can improve student's
	mol			in the PRI	OII		significantly	achievement and will
	(2018)			learning			affects the	deliberation in a PBI
	(2010)			situation			learning outcome	context
				situation.			of the students	context.
							or the students.	
6	Kim &		~	To compare the	Instruc	Exper	Students	Addressing which
	Lim,			effectiveness of	tional	iment	supported with a	type of scaffolding
	(2019)			two different	design	al	reflective type of	most effectively
	, ,			types of			scaffolding	encourage student-
				scaffolding			experience higher	centered and online
				((reflective or			achievement than	team collaboration is
				supportive),			their counterparts	of great importance.
				Problem-solving			with supportive	
				skills on			scaffolding.	
				student's				

				problem solving				
				and academic				
				achievement in				
				an online				
				learning				
				environment.				
7	Peng,		✓	To readdress	Compu	Quan	Students	On the contrary view,
	Wang &			problem facing	ter	titativ	perceived that	students offered their
	Sampso			instruction in	progra	e	using a web-based	suggestions on the
	n (2017)			computer	mming	surve	computer in	improvement of the
				programing,		у	scaffolding PBL	entire learning
				through design			structure can	approach on its
				and evaluation of			provide a	interface, learning
				web-based			promising result	resources, and further
				structure to			on their efforts in	support to students
				engage students			constructing new	throughout the
				in realistic			knowledge and	learning process.
				complex			achievement, as a	
				tasks through the			rationale to learn	
				aid of computer-			their course in	
				based			computer	
				scaffolding			programing.	
8	Fernand	No	√	To explore the	Writin	Mix-	Online scaffolding	undertaking an online
	o (2018)			effectiveness of	g	meth	enhances students'	learning environment
				online		od	engagement and	is worthy of the
				scaffolding in		Quest	boosts	creation of innovative
				assisting		ionna	understanding of	exercise in other
				student's		ire &	the abstract	academic displaces
				engagement		Interv	concept in	like Agriculture.
				through abstract		iew	learning.	
				knowledge				
				assessment.				
9	(Kim,		\checkmark	Explore	STEM	Revie	Multiple types of	The selection of the
	Belland,			student's	Educat	W	scaffolding in	type and quantity of
	&			perception of the	ion		PBL increase	help they need when
	Axelrod,			use of a student-			students'	confronted by
	2019b)			centered			experience in	challenges beyond
				scaffolding to			independent	their abilities
				address			learning and skills	remained an issue.
1				challenges in			development.	

			PBL for optimal				
			engagement in				
			learning.				
1	Lawanan		To describe o	Madiaa	~~~~	Online coeffelding	Thomas a similar
1	Lauerer	v	To describe a	Medica	quant	in DDL income	ineretore, a similar
0	et al.		model of online	1	itativ	in PBL improved	study using social
	(2017)		medical course		e	student's	media should be
			program utilized			experience,	undertaking as a
			a constructivist			knowledge and	guide for other
			idea to			ease in dealing	instructional
			innovatively			with	programs like
			combine online			communication of	Agriculture to
			problem-based			problems in a	improve student's
			learning and			medical care	abilities through
			scaffolding			setting.	active engagement in
			student learning.				the learning situation.
1		~	To redresses the	STEM	Revie	Online scaffolding	
1	Belland		process of PBL	Educat	w	is an important	However, conducting
	(2016)		and way students	ion		structure that	the study in other
			learn though			assists students to	field of education like
			problem solving			succeed in PBL	Agriculture through
			with the support			and scaffolding	utilization of social
			of a change in			has a reasonable	media as a
			online			effect on engaging	considerable
			scaffolded			students.	scaffolding effort to
			technology and				aid learning activities
			PBL				wiil vield a
							significant impact on
							student activities
							student activities.
			1				

Building on the above, Peng et al. (2017) surveyed the problems facing instruction in computer programing, through the design and evaluation of web-based structure to engage students in realistic complex tasks through the aid of computer-based scaffolding. Students perceived that using a web-based computer in scaffolding PBL structure can provide a promising result on their efforts in constructing new knowledge and achievement, as a rationale to learn their course in computer programing. On the contrary view, students offered their suggestions on the improvement of the entire learning approach on its interface, learning resources, and further support to students throughout the learning process.

International Journal of Psychosocial Rehabilitation, Vol. 24, Issue 06, 2020 ISSN: 1475-7192

Moreover, Fernando (2018) explore the effectiveness of online scaffolding in assisting student's engagement through abstract knowledge assessment. The study discovered that online scaffolding enhances students' engagement and boosts understanding of the abstract concept in learning. Conversely, undertaking to an online scaffolded learning environment is worthy in education for the creation of innovative assessment exercises in other academic displaces like Agriculture where students' progress and effective completion of their learning outcome is determined by their skills and achievement. To support the concept, Kim et al. (2018) explored student's perception of the use of a student-centered scaffolding to address challenges in PBL for optimal engagement in learning. It indicates that multiple types of scaffolding in PBL increases students' experience in independent learning and skills development. However, selection of type and amount of support needed by the students when confronted challenges beyond their abilities remained an issue. Thus, it is important to use an online and interactive scaffolding to give an optimal challenge to encourage student's engagement through innovative and creative activities towards fostering and nurturing the 21st century skills.

A quantitative survey conducted by Lauerer et al. (2017) described a model of the online medical course program. It utilized a constructivist idea that innovatively combines online problem-based learning and scaffolding student learning. Although study indicates that online scaffolding in PBL improved student's experience, knowledge and ease in dealing with communication of problems in a medical care setting. The researcher would have use PBL and online scaffolding as an innovative framework to assist student's engagement fo effective knowledge construction. Therefore, a similar study using social media should be undertaking as a guide for other instructional programs like Agriculture to improve student's abilities through active engagement in the learning situation.

In a similar but different study, Kim, Belland, Lefler et al. (2019) readdressed the process of PBL and the way medical students learn though problem solving with the support of online scaffolded technology and PBL. The study inferred that computer-based scaffolding is an important structure that assists students to succeed. The study further documented that PBL and technology-based scaffolding has a reasonable effect on improving student's reasoning skills and yield better learning outcomes of students. However, conducting the study in other field of education like Agriculture through utilization of social media as a considerable scaffolding effort to aid learning activities. Studies have indicated PBL and scaffolding able to advance engagement and hachement in learning setting. Nevertheless, without proper structuring, taking the suitable technology into consideration the outcome will not be achieve. It thus significant to understand the need and utilization of social media as online technology to support PBL to enhance an effective students' engagement and better learning outcome.

Figure 2: Concept of PBL and Scaffolding of student for optimal engagement and academic achievement.

IV. CONCLUSION

Literature is almost unanimous about the need for understanding problem-based learning practices. Though the debate relating to the application of problem-based learning approaches is still going on, PBL and technologybased scaffolding framework can be jointly utilized through diverse learning situations for the purpose of attending to certain needs of students in the field of Agricultural education. Based on this review, the following remarks can be made:

1. Scaffolding problem-based learning in educational practice ensures that student's independence is balanced and working together in teamwork, with their teachers as facilitators;

2. This would help to perceive what would be learned, while online scaffolding approach in PBL nurtures skills development instantly in a more professional method;

3. Scaffolding of students intended for more real-world problems can promote the integration of hybrid PBL that address the needs of these students; and

4. A transition towards placing students at the central heart of their own learning situation can encourage greater engagement and academic achievement.

Therefore, implementation of interactive student-centered learning such as integration of problem- based learning and online scaffolding is able to provide a source for engaging students, improve critical thinking, training them on how to analyze and resolve authentic problems, through active collaboration, peer interaction, problem-solving and self-directed learning with instructors as a facilitator of learning process which prepares the students to face the challenges of the 21st century.

REFERENCES

- 1. Alger, C., & Kopcha, T. (2009). eSupervision: A Technology Framework for the 21st Century Field Experience ... Issues in Teacher Education, 18(2), 31–46.
- Barrows, H. S., & Tamblyn, R. M. (1980). Problem-Based Learning An Approach to Medical Education. In Springer Publishing Company.

- 3. Belland, B. R. (2016). Developing my perspectives on scaffolding and problem-based learning: A retrospective view. Interdisciplinary Journal of Problem-Based Learning, 10(2).
- 4. Chung, E. Y. H. (2019). Facilitating learning of community-based rehabilitation through problem-based learning in higher education. BMC Medical Education, 19(1), 433.
- 5. Fernando, W. (2018). Show me your true colours: Scaffolding formative academic literacy assessment through an online learning platform. Assessing Writing, 36(September 2017), 63–76.
- Fidan, M., & Tuncel, M. (2019). Integrating augmented reality into problem based learning: The effects on learning achievement and attitude in physics education. Computers and Education, 142(September 2018).
- 7. Garren, T. L., & Skylstad, K. (2016). Scaffolded online learning modules for milliequivalency and milliosmolarity. Currents in Pharmacy Teaching and Learning, 8(3), 316–322.
- Ginaya, G., Nyoman, N., & Astuti, S. (2020). Designing Problem-Based Learning (PBL) Model for Tourism Vocational Education in 4. O Industry. International Journal of Linguistics, Literature and Culture, 6(1), 14–23.
- 9. Haruehansawasin, S., & Kiattikomol, P. (2018). Scaffolding in problem-based learning for low-achieving learners. Journal of Educational Research, 111(3), 363–370.
- 10. Jabarullah, N. H., & Iqbal Hussain, H. (2019). The effectiveness of problem-based learning in technical and vocational education in Malaysia. Education and Training, 61(5), 552–567.
- Jamari, D., Abdullah, Z., Mohamed, H., Zaid, N. M., & Aris, B. (2018). Implementation of Case Based Learning and Metacognitive Scaffolding in Social Media to Improve Problem Solving Skill—A Theoretical Framework. Advanced Science Letters, 24(6), 4196–4201.
- 12. Jumaat, N. F., & Tasir, Z. (2016). A framework of metacognitive scaffolding in learning authoring system through Facebook. Journal of Educational Computing Research, 54(5), 619–659.
- 13. Kim, & Lim, K. (2019). Promoting learning in online, ill-structured problem solving: The effects of scaffolding type and metacognition level. Computers and Education, 138(November 2017), 116–129.
- 14. Kim, N. J., Belland, B. R., & Axelrod, D. (2019a). Scaffolding for optimal challenge in k–12 problembased learning. Interdisciplinary Journal of Problem-Based Learning, 13(1), 11–15.
- Kim, N. J., Belland, B. R., & Axelrod, D. (2019b). Scaffolding for Optimal Challenge in K 12 Problem-Based Learning The Interdisciplinary Journal of Problem-based Learning Scaffolding for Optimal Challenge in K – 12 Problem-Based Learning. Interdisciplinary Journal of Problem-Based Learning Volume, 13(1), 11–15.
- Kim, N. J., Belland, B. R., Lefler, M., Andreasen, L., Walker, A., & Axelrod, D. (2019). Computer-Based Scaffolding Targeting Individual Versus Groups in Problem-Centered Instruction for STEM Education: Meta-analysis. Educational Psychology Review.
- Kim, N. J., Belland, B. R., & Walker, A. E. (2018). Effectiveness of Computer-Based Scaffolding in the Context of Problem-Based Learning for Stem Education: Bayesian Meta-analysis. Educational Psychology Review, 30(2), 397–429.
- Kitsantas, A., Baylor, A. L., & Hiller, S. E. (2019). Intelligent technologies to optimize performance: Augmenting cognitive capacity and supporting self-regulation of critical thinking skills in decisionmaking. Cognitive Systems Research, 58, 387–397.
- 19. Lauerer, J., Edlund, B. J., Williams, A., Donato, A., & Smith, G. (2017). Scaffolding behavioral health

concepts from more simple to complex builds NP students' competence. Nurse Education Today, 51, 124–126.

- Lee, E., & Hannafin, M. J. (2016). A design framework for enhancing engagement in student-centered learning: own it, learn it, and share it. Educational Technology Research and Development, 64(4), 707– 734.
- 21. Loyens, S. M. M., Kirshiner, P., & Paas, F. (2011). Problem-based learning (Vol. 2).
- Moallem, M., Hung, W., & Dabbagh, N. (2019). A Short Intellectual History of Problem Based Learning The Early History of PBL : 1963 – 1980 McMaster 's Pioneering Program in Medical Education. 3–24.
- 23. Narad, S. G., Chari, S., & Gupta, M. (2016). Implementing problem based learning for first MBBS students in biochemistry. Journal of Education Technology in Health Sciences, 3(3), 115–121.
- Neba, B., Shey, P., & Bruno, B. (2019). Cognitive Apprenticeship and the Development of Productive Learning Skills among Emerging Adults Engaged in Mechanic Work in the Informal Sector in Buea Municipality. International Journal of Trend in Scientific Research and Development (IJTSRD), 3(5), 2013–2048.
- 25. Niwa, M., Saiki, T., Fujisaki, K., Suzuki, Y., & Evans, P. (2016). The Effects of Problem-Based-Learning on the Academic Achievements of Medical Students in One Japanese Medical School, Over a Twenty-Year Period. Health Professions Education, 2(1), 3–9.
- Nwajiuba, C., Igwe, P., Akinsola-Obatolu, A., & Icha-Ituma, A. (2019). A Stakeholder Approach: What can be done to improve Higher Education Quality and Graduate Employability? Industry and Higher Education, 5–10.
- Peng, J., Wang, M., & Sampson, D. (2017). Scaffolding Project-Based Learning of Computer Programming in an Online Learning Environment. Proceedings - IEEE 17th International Conference on Advanced Learning Technologies, ICALT 2017, 315–319. IEEE.
- 28. Phungsuk, R., Viriyavejakul, C., & Ratanaolarn, T. (2017). Development of a problem-based learning model via a virtual learning environment. Kasetsart Journal of Social Sciences, 38(3), 297–306.
- Schwendimann, B. A., Kappeler, G., Mauroux, L., & Gurtner, J. L. (2018). What makes an online learning journal powerful for VET? Distinguishing productive usage patterns and effective learning strategies. Empirical Research in Vocational Education and Training, 10(1).
- 30. Serife, A. (2016). The role of technology-based scaffolding in problem-based online asynchronous discussion. British Journal of Educational Technology, 47(4), 680–693.
- Servant-Miklos, V. F. C. (2019). A Revolution in its Own Right: How Maastricht University Reinvented Problem-Based Learning. Health Professions Education, 1–12.
- 32. Tawfik, A. ., & Kolodner, J. L. (2016). Systematizing Scaffolding for Problem-Based Learning : A View from Case-Based Reasoning The Interdisciplinary Journal of Problem-based Learning 10th Anniversary Section : Past and Future Systematizing Scaffolding for Problem-Based Learning : A View from C. Interdisciplinary Journal of Problema-Based Learning, 10(1), 5–6.
- Tawfik, A., Fowlin, J., Kelley, K., Anderson, M., & Vann, S. W. (2019). Supporting Case-Based Reasoning in Pharmacy Through Case Sequencing. Journal of Formative Design in Learning, 3(2), 111– 122.
- 34. Thompson, C. C. (2019). Advancing Critical Thinking Through Learning Issues in Problem-Based Learning. Medical Science Educator, 29(1), 149–156.

- 35. Verstegen, D. M. L., Fonteijn, H. T. H., Dolmans, D. H. J. M., Rijdt, C. C. E., Grave, W. S., & Merriënboer, J. J. G. (2019). An Exploration of Problem-Based Learning in a MOOC. In The Wiley Handbook of Problem-Based Learning (pp. 667–689).
- 36. Wahyu, W., Kurnia, & Syaadah, R. S. (2018). Implementation of problem-based learning (PBL) approach to improve student's academic achievement and creativity on the topic of electrolyte and non-electrolyte solutions at vocational school. Journal of Physics: Conference Series, 1013(1).
- 37. Yew, E. H. J., & Goh, K. (2016). Problem-Based Learning: An Overview of its Process and Impact on Learning. Health Professions Education, 2(2), 75–79.