Comparative Analysis of Data Mining in Criminal and Fraud Detection

¹Ayushi Dwivedi, ²Chintan Singh, ³*Amarnath Mishra, ⁴Ved Prakash Mishra

ABSTRACT-- This manuscript explains the concept of data mining and its application in cybercrimes. Cybercrimes are becoming very serious day by day due to large data sets are generated by organizations and lack of the awareness of the internet users. The application of data mining in cybercrime and framework of data mining for detection of financial fraud is explained. A comparative analysis on digital forensic tools and techniques are

done with their benefits

Keywords-- FBI, Data Mining, Computer, KDD, data cleaning, data integration, data selection, data transformation, extraction, pattern, pattern evaluation, interestingness measures, knowledge presentation, database, database warehouse, repository, pattern evaluation, user interface, data warehouse, user interaction.

I. INTRODUCTION

From the past decade, IT and Computer field is growing enormously and so are their vulnerabilities. Data mining is one of the most recent ways introduced in today's world criminal data mining. National security seems to be at high risk after 09/11 attack. FBI and other agencies are devoting all their time to gather information about the possible upcoming threats in order to prevent it. They started monitoring and analysing the criminal data record and find out any pattern or evidence. The architecture of a basic data mining system has some major components like Databases, Data Warehouse, World Wide Web and other important repository, Data Warehouse server or databases, Knowledge base, Data mining engine, Pattern evaluation, User interface

II. TECHNIQUES USED IN DATA MINING

Data mining is about extrapolating patterns and new knowledge from the big sets of data that were previously collected. Various techniques used are:

A. Tracking patterns

A set of data is taken and observed statistically and thoroughly to find a new and interesting pattern in the given set of data which was not known. It is usually a technique where we find out some aberrations, ebb, and flow of certain variables in a given set of data at a given interval of time.

¹ Amity Institute of Forensic Sciences, Amity University, Noida, India.

² Amity Institute of Forensic Sciences, Amity University, Noida, India.

³* Assistant Professor & Program Leader, Amity Institute of Forensic Sciences, Amity University, Noida, India,

Contact detail: +91-9818978527, amishra5@amity.edu/drmishraa1@gmail.com

⁴ Department of Engineering & Technology, Amity University, Dubai, U.A.E.

Received: 22 Sep 2019 | Revised: 13 Oct 2019 | Accepted: 15 Jan 2020

1449

International Journal of Psychosocial Rehabilitation, Vol. 24, Issue 06, 2020

ISSN: 1475-7192

B. Classification

Classification builds a model to predict different labels according to their category to distinguish between

objects of few different classes. These have are predefined, discrete and unordered discrete label [1,2]. Zhang and

Zhou [3] state that classification is the way of finding out a set of similar features and models which differentiate

data concepts and their classes.

C. Prediction

Old data is recognized and the historical trend is observed that further predict about the future occurring that

could take place. Prediction models values functions.

D. Association

Association relates with the data mining function that discovers the probability of the co-occurrence of two

similar types of data in a set. Association rules are discarded if it does not satisfy both a minimum support threshold

as well as minimum confidence threshold between the correlated attribute value pairs.

E. Outlier detection

Determining anomalies or outlines in data is an important factor to observe and identify a particular type of

uncommon event in the previous data set.

F. Clustering

According to Yue et al. [4], p. 5520], "clustering analysis concerns the problem of decomposing or partitioning

a data set into groups so that the points in one group are similar to each other and are as different as possible from

the points in other groups."

G. Regression

Regression primarily deals with numeric values that help to determine the similarities between the variables.

H. Social Network Analysis

This type of data analysis is based on common relation of interest to understand their structure and behaviour.

I. Entity Extraction

An information extraction procedure of identifying and classifying data to pre-defined categories by converting

unstructured data into structured one so used for retrieving information.

Keyword used: data, data mining, databases, classification, frequent pattern analysis, association, correlations,

prediction, cluster analysis, outlier analysis, evolution analysis, pattern detection, regression, modeling, anomalies,

association rules, minimum support threshold, minimum confidence thresh, social network, social network

analysis, MMO, email network.

Received: 22 Sep 2019 | Revised: 13 Oct 2019 | Accepted: 15 Jan 2020

1450

International Journal of Psychosocial Rehabilitation, Vol. 24, Issue 06, 2020

ISSN: 1475-7192

III. METHODOLOGY FOR RESEARCH IN DATA MINING

There are certain phases to divide the framework which are

Research definition

Research methodology

Research analysis

In the first phase that is of research definition, a person finds out the area for research, goals and scope of the particular research area. Here, we take the example of Financial Fraud Detection (FFD) which relies on Data Mining in which the goal is to create a classification framework. Scope here is the literature on the various applications of data mining that are used in FDD between the years 1997 to 2008. In the second phase used for particular research, we define the required portion and the related articles and framework to further elaborate it.s

We took forty-nine articles for classification and were classified according to the given steps [5].

• Classify the selected articles.

• Verify the classification with other author(s) and check it again with another independent co-author.

• Approve the categories assigned to the article if the classification results are consistent, or hold a discussion among the researchers to reach a consensus otherwise.

The last phase of this methodology is used to analyze the final research to lead us to the upcoming research and give us a proper conclusion.

Keywords used: World scientific net, journals, scientific data, methodology, framework, Research definition, Research methodology, Research analysis, Financial Fraud Detection (FFD), computer science, management, marketing, engineering, social work, information science, Transactions, medical research, Springer-Link Journals, protocols, World Scientific Net.

IV. APPLICATION OF DATA MINING TECHNIQUES IN CRIME DETECTION

Data mining techniques used to resolve various types of crime including financial frauds which are better analysed and crime pattern were recorded successfully by data mining technique.

Following are the techniques used for detection of various crime patterns-

V. ENTITY EXTRACTION

These techniques were used in frauds discussing in [6, 7, 8, 9, 10]

Key Terms-Named Entity Extraction (lexical look up, rule-based, SPSSLexiQuest, Natural Language Processing

Objective- Location, Time, Vehicle, Nationality,

Phone, Gender and Race

B. Cluster analysis- Application of this technique described widely in- [11, 12, 13, 14, 15, 16]

Key terms-GIS, Self-Organizing Map, Partitioning Clustering Technique, Hierarchical Clustering Technique *Objective*-Detect crime hotspots; automatically identify relation from available crime data and weigh relationships to find out all associate possible chances of crime with other densities.

VI. ASSOCIATION RULE

association rule application effectively used in [17, 18, 19, 20, 21]

Key terms- Distributed Association Rule Mining and Apriori Algorithm.

Objective- to connect crime incidents, narrow down all possible suspects, gives informative association among criminal entities or items.

VII. SOCIAL NETWORK ANALYSIS

pattern analyzed and described in [22, 23, 24, 25]

Key terms- K-core, Core/periphery Ratio; Measure of Centrality, Closeness and Between.

Objective- It Provide analyses of functions, related structures and the combination measurements, which in crime domain

VIII. ADVANTAGES AND DISADVANTAGES OF DATA MINING TECHNIQUES

FOR FRAUD DETECTION

Data mining techniques day by day proving themselves a key factor for data extraction and analysis. Varieties of tools and brands competing each other to prove themselves best in this field. Below is the table which points out some of the mostly used techniques for data extraction along with their advantages and disadvantages- (Table 1)

Table 1: Advantages and disadvantages comparison of widely used techniques

S.	Technique	Advantages	Disadvantages
No.	s used		
1.	Entity	Clear, Simple	Too Precise
	Extraction	Gives lower	Data Sparseness
		estimate of	
		evaluated system	
		Discriminative	
		method	
		Readability and	
		maintainability	
2.	Cluster	Efficient	Maybe possible
	Analysis	Simple	that the number
		Not complex	of cluster is
		Arbitrary shape	given in advance
		Works in presence	Sometimes can't
		of noise	work well in the

		Good visualization	presence of
		capability	outlier
3.	Classificati		
3.		Easy to understand	Limited memory
	on	Easy to implement	Slow process
		Fast training and	Sometimes
		noisy data robust	Complex
		Compatible with	Duplication
		multimodal classes	could be present
		Easy interpretation	Solution
		Handles uncertainty	depends on
		Stochastic	direction of the
		relationships are	decision
		identify	
4.	Associatio	Subset of a frequent	Unnecessarily
	n Rule	item set will also be	generating and
		frequent (Apriori)	counting so
		Number of	much
		transaction in	information
		database will be	which is actually
		more than number	small (AIS)
		of entries	Same entities as
		(AprioriTid)	its support
		(-4	value(SETM)
5.	Social	It is a type of	Affected privacy
٥.	Network	predictive analysis	Serious security
	Analysis	Non expensive and	threats
	Allalysis	_	
		revenue improves	Quite expensive
		It creates awareness	initially
		Enforce government	
		regulations	
6.	Regression	Relative influence	Use of
		of the predictor	incomplete data
		variables to	False result that
		criterion value is	correlation is
		determined	caused
		It can identify	
		anomalies or	
		outliers so works	
		well even in its	
		presence	
		*	

IX. THE CONCEPTUAL FRAMEWORK FOR APPLICATION OF DATA MINING

IN FINANCIAL FRAUD DETECTION

This classification framework is based on the knowledge on the research of data mining and fraud detection research. The research in the field of application of data mining algorithms and techniques useful for financial accounting fraud detection is a well-studied area.

Below is the main areas of the framework-

- **A. Prediction-** For prediction the value should be continued value rather than discrete or unordered value. This attribute as termed as predicted attribute
- B. Clustering- It is analysed that data objects in individual cluster should possess high intra-cluster similarity among the similar cluster but also have low inter-cluster similarity to those as in different clusters.
- *C. Regression-* This technique used in fraud related to detection of credit card, automobile insurance, crop and corporate sector.
- **D.** Outlier detection- Data which have the different properties than the rest of the remaining ones is termed as outliers.
- *E. Classification* neural networks, the Naïve Bayes technique, decision trees are some basic classification techniques.
- **F.** Visualization- It gives the answers on easy way for difficult complex action.

ANALYSIS

X. COMPARATIVE ANALYSIS OF THE TOOLS USED FOR DIGITAL FORENSIC

As described about the techniques in previous sections this section compare the tools used for data extraction and analysis. Table 2 describe such tools-

Table 2: Comparison between different tools use worldwide for data mining and fraud detection.

	Digital	Advantages	Daadvantages
S.	Forens		
No.	ic		
	Tools		
	Used		
1.	SANS	-Analysis of	-Poor user
	.investi	Expert witness	documentation
	gation	format (E01)	-Need to resort to the
	Forensi	-Advanced	Command -Line for
	c	Forensics Format	any serious forensics
	Toolkit	(AFF)	work.

		-update and	
		customize DFIR	
		package	
		automatically.	
	Sleuthk	-analysis of	-not be able to
2.	it +	timeline and time	manually carve out
	Autops	zone	data
	y	-filter hash values	-tool would freeze
		-analysis of file	-disoriented at times
		system and	-hard to navigate to
		keyword search in	places that a search
		advance manner	provided
		-GUI (Graphical	
		user interface) can	
		display system	
		events in form pf	
		pictorial	
		representation.	
	FTK	-Data can be	-No progress report
3.	imager	preview as well as	-unable to perform
		files and folders.	multi-tasking
		-analysis of data	operation
		from different	- scripting can't run in
		sources	this tool
		-also image	-no MAC support
		mounting can be	-file limit is 2 million
		done.	-PSD and AVI not
			supported
	EnCase	- complex file can	- EnCase Index needs
4.		be breakdown	work
		easily for	- No Outlook 2003
		examination, such	PST/OST support
		as the registry	- No Internal Mail
		files, dbx & pst	Viewer
		files, thumbs db	- Rough looking
		etc.	Report
		- time line present	
		- full scripting	the Drive
		abilities and can	
		automatically	

		decryption and	
		carving of report.	
	I :		
_	Linux	- can done backup	-can wipe a disk
5.	dd	and restoration of	completely so caution
	comma	master boots	is required.
	nd	records	-dd uses the kernel to
		- Easy	read or write to device
		modification of	files instead of
		data.	accessing hardware
		- dd can duplicate	
		data across files,	
		devices, partitions	
		and volumes	
		- copy the entire	
		disk	
	CAINE	-full of tools and	-It lacks
6.	(Comp	utilities to aid	documentation.
	uter	every stage of a	
	Aided	digital	
	Investi	investigation	
	gative	-very helpful	
	Enviro	scripts that are	
	nment)	mated to the Caja	
	minent)	Ĭ	
		file manager -host device is	
		mounted with a	
		read-only	
		software write	
		blocker	
7.	ExifTo	-verbose and	-Information stored in
	ol	HTML-based hex	different places
		dump output	within a single
		format can also be	format.
		analysed.	-The writing logic for
		-can duplicate	ExifTool is the
		meta-data	reverse of the reading
		information	logic
		between files.	-Can't edit or create
		-can back up the	most of the formats.
		original image	
		<u> </u>	

		without command	
		or permission.	
8.	Xplico	-Port Independent	-no instructions or
	1	Protocol	support for installing
		Identification	the software on
		(PIPI) for each	Windows via Red
		application	Hats Cywin or other
		protocol;	similar tools
		-Multithreading;	-online manuals are
		-Output data and	out dated and refer to
		information in	very old versions of
		SQLite database	the tool
		or Mysql database	-The command line
		and/or files;	interface of Xplico
		-At each data	does not have a
		reassembled by	manual
		Xplico is	-all third party
		associated a XML	documentation are
		file that uniquely	either outdated
		identifies the	
		flows and the pcap	
		containing the	
		data reassembled;	
		-Realtime	
		elaboration	
9.	Last	-Records many	-It can only log files
	Activit	user actions	opened and saved in
	y View	-it will create a	the standard
		timeline of events	Windows Open/ Save
		on launching.	dialogs
		-To monitor kids	-System cleaning
		or family persons	tools may wipe
		activity	information
10.	DSi	-protect the USB	-For newer versions
	USB	for modification	of window require
	Write	by making it only	changes.
	Blocke	readable. So that	-Receiver also should
	r	no data can be	have same tool to
		changed or	unlock USB.
		overwrited.	
i .			

		-application status	-May damage USB if
		can be seen in	try to unlock from
		taskbar	other source.
		simultaneously.	
		-Mostly runs on	
		windows	
11.	FireEy	-this tool helps to	-Redline only works
	e	identify a	on memory images
	RedLin	compromised file	and live hosts
	e	that was	-not support remote
		introduced and	collection
		how such file	-Always have to
		survives in the	analyse by GUI
		system	cannot work on
		-data can be filter	command line
		out by using	method.
		whitelist	
		indicators.	
		-collects	
		information from	
		live running	
		sytems.	
		-It is free to use in	
		any sized	
		environment	
		- As for general	
		rootkit protection,	
		Redline uses raw	
		disk access by	
		default where	
		possible to avoid	
		being subverted	
		by rootkits	
12.	Helix3	-Data-folds are	-Pro version is paid.
		used to tag	-Live system capture
		different memory	in windows not there.
		sections	
		-Have a RAM	
		editor	

XI. LIMITATIONS OF DATA MINING METHOD

Beyond all these profits data mining technique have limitation also which are as follows-

- Validity must be made by the user
 - The system violates the privacy of the user
 - High chance of critical data must be hacked.
 - The safety and security measure
 - Become it less prone to misuse

XII. CONCLUSION

This paper is a review study which begins with brief introduction of fraud and data mining and its techniques for crime detection, preventions and analysis. By correct application of data mining savings, security, and extraction could be attained. Data mining techniques generally aimed to uncover the hidden relationship under large data base. By following a thorough research, we wrote list of application and framework of data mining techniques. This is presently most accepted technique for fraud analysis.

REFERENCES

- 1. Han, M. Kamber, Data Mining: Concepts and Techniques, Second ed, Morgan Kaufmann Publishers, 2006, pp. 285–464.
- 2. P. Tan, M. Steinbach, V. Kumar, Introduction to Data Mining, First ed.AddisonWesley Longman Publishing Co., Inc, 2005
- 3. D. Zhang, L. Zhou, Discovering golden nuggets: data mining in financial application, IEEE Transactions on Systems, Man and Cybernetics 34 (4) (2004) Nov.
- 4. Yue, X. Wu, Y. Wang, Y. Li, C. Chu, A review of data mining-based financial fraud detection research, international conference on wireless communications Sep, Networking and Mobile Computing (2007) 5519–5522
- E.W.T. Ngai, L. Xiu, D.C.K. Chau, Application of data mining techniques in customer relationship management: a literature review and classification, Expert Systems with Applications 36 (2) (2009) 2592– 2602
- Chau, M., Xu,J.J., & Chen,H. (2002,May) .Extracting meaningful entities from police narrative reports.
 In Proceedings of the 2002 annual national conference on Digital government research (pp. 1-5). Digital Government Society of North America.
- 7. Chen, H., Chung, W.,Xu. J., Wang,G., Qin,Y.,& Chau,M.(2004). Crime data mining: a general frame work and some examples. computer, (4),50-56.
- 8. Cocx, T. K., &Kosters, W.A. (2006, July). A distance measure for determining. Similarity between criminal investigations. An Industrial Conference on Data Mining. (pp.511-525). Springer, Berlin, Heidelberg
- Ku,C. H., Iriberri,A.,and Leroy.G.(2008). Crime information extraction from police and witness narrative reports. In: Proceedings of the IEEE Conference on Technologies for Homeland Security, 12-13 May, Waltham, MA:193–198.

- Pinheiro, V., Furtado, V., Pequeno, T., and Nogueira, D. (2010). Naturallan-guage processing based on semantic inferentialism for extracting crime information from text. In: Proceedings of the IEEE International Conference on Intelligence and Security Informatics (ISI), 23-26May, Vancouver, BC, Canada: 19–24.
- 11. Nath, S. V. (2006, December). Crime pattern detection using data mining. In 2006 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology Workshops (pp. 41-44).
- 12. Pang-Ning,T., Steinbach,M.,and Kumar,V.(2014). Introduction to Data Mining. First Edition,Pearson:UK.
- 13. Dietterich, T. G., Becker, S., & Ghahramani, Z. (Eds.). (2002). Advances in Neural Information Processing Systems 14: Proceedings of the 2001 Conference (Vol.2). MIT Press.
- 14. Anderberg, M.R. (1973). Cluster analysis for applications (No.OAS-TR-73-9). Office of the assistant for study support kirtlandAFBnmex.
- 15. Ng,R. T., &Han,J.(1994, September).E cientand E ective clustering methods for spatial data mining.In Proceedings of VLDB (pp. 144-155).
- 16. Schroeder, J., Xu,J., Chen,H.,and Chau, M. (2007). Automated criminal link analysis based on domain knowledge. Journal of the American Society for Information Science and Technology,58(6):842–855.
- 17. Brown, D.E., and Hagen, S. (2003). Data association methods with applications to law enforcement. Decision Support Systems, 34(4):369–378.
- 18. Lin, S., & Brown D. E. (2006). An outlier-based data association method for linking criminalincidents. DecisionSupportSystems,41(3),604-615.
- 19. Appavu, S., Pandian, M., andRajaram,R.(2007). Association Rule Mining for Suspicious Email Detection:

 A Data Mining Approach In: Proceedings of the IEEE Intelligence and Security Informatics, 23-24 May, New Brunswick, NJ: 316–323.
- Ng, V., Chan, S., Lau, D., & Ying, C.M. (2007, March). Incremental mining for temporal association rules for crime pattern discoveries. In Proceedings of the eighteenth conference on Australasian database-Volume 63 (pp. 123-132). Australian Computer Society, Inc..
- 21. Buczak, A.L., and Gifford, C.M. (2010). Fuzzy Association Rule mining for community crime pattern discovery. In: Proceedings of the ACM SIGKDD Work-shop on Intelligence and Security Informatics, 25-28 July, Washington DC.
- 22. Sparrow, M.K. (1991). The application of network analysis to criminal intelligence: An assessment of the prospects. Social networks, 13(3), 251-274.
- 23. Wang, J.C., and Chiu, C.Q. (2005). Detecting online auction inflated-reputation behaviors using social network analysis. In: Proceedings of the Annual Conference of the North American Association for Computational Social and Organizational Science, Notre Dame: 26–28
- 24. Qin, J., Xu, J. J., Hu, D., Sageman, M., and Chen, H. (2005). Analyzing terrorist networks: In Intelligence and Security informatics, 3495:287–304.
- 25. McNally, D., &Alston,J. (2005). The use of social network analysis (SNA)in the examination of an outlaw motor cycle gang. Journal of Gang Research,13(3),1.